Формула площади криволинейной трапеции. Определенный интеграл. Как вычислить площадь фигуры. Нахождение площади криволинейного сектора

Определение. Фигура, ограниченная графиком непрерывной, знакопостоянной функции f(x), осью абцисс и прямыми x=a, x=b, называется криволинейной трапецией.

Способы нахождения площади криволинейной трапеции

Теорема. Если f(x) непрерывная и неотрицательная функция на отрезке , то площадь соответствующей криволинейной трапеции равна приращению первообразных.

Дано: f(x)- непрерывная неопр. функция, xО.

Доказать: S = F(b) - F(a), где F(x) - первообразная f(x).

Доказательство:

1) Рассмотрим вспомогательную функцию S(x). Каждому xО поставим в соответствие ту часть криволинейной трапеции, которая лежит левее прямой (рис. 2), проходящей через точку с этой абциссой и параллельно оси ординат.

Следовательно S(a)=0 и S(b)=Sтр

Докажем, что S(a) - первообразная f(x).

D(f) = D(S) =

S"(x0)= lim(S(x0+Dx) - S(x0) / Dx), при Dx®0 DS - прямоугольник

Dx®0 со сторонами Dx и f(x0)

S"(x0) = lim(Dx f(x0) /Dx) = lim f(x0)=f(x0): т.к. x0 точка, то S(x) -

Dx®0 Dx®0 первообразная f(x).

Следовательно по теореме об общем виде первообразной S(x)=F(x)+C.

Т.к. S(a)=0, то S(a) = F(a)+C

S = S(b)=F(b)+C = F(b)-F(a)

1). Разобьем отрезок на n равных частей. Шаг разбиения (рис. 3)

Dx=(b-a)/n. При этом Sтр=lim(f(x0)Dx+f(x1)Dx+...+f(xn))Dx=n®Ґ = lim Dx(f(x0)+f(x1)+...+f(xn))

При n®Ґ получим, что Sтр= Dx(f(x0)+f(x1)+...+f(xn))

Предел этой суммы называют определенным интегралом.

Сумма стоящая под пределом, называется интегральной суммой.

Определенный интеграл это предел интегральной суммы на отрезке при n®Ґ. Интегральная сумма получается как предел суммы произведений длины отрезка, полученного при разбиении области определения функции в какой либо точке этого интервала.

a - нижний предел интегрирования;

b - верхний.

Формула Ньютона-Лейбница.

Сравнивая формулы площади криволинейной трапеции делаем вывод:

если F - первообразная для b на , то

т f(x)dx = F(b)-F(a)

т f(x)dx = F(x) ф = F(b) - F(a)

Свойства определенного интеграла.

т f(x)dx = т f(z)dz

т f(x)dx = F(a) - F(a) = 0

т f(x)dx = - т f(x)dx

т f(x)dx = F(a) - F(b) т f(x)dx = F(b) - F(a) = - (F(a) - F(b))

Если a, b и c любые точки промежутка I, на котором непрерывная функция f(x) имеет первообразную, то

т f(x)dx = т f(x)dx + т f(x)dx

F(b) - F(a) = F(c) - F(a) + F(b) - F(c) = F(b) - F(a)

(это свойство аддитивности определенного интеграла)

Если l и m постоянные величины, то

т (lf(x) +m j(x))dx = l т f(x)dx + m тj(x))dx -

Это свойство линейности определенного интеграла.

т (f(x)+g(x)+...+h(x))dx = т f(x)dx+ т g(x)dx+...+ т h(x)dx

т (f(x)+g(x)+...+h(x))dx = (F(b) + G(b) +...+ H(b)) - (F(a) + G(a) +...+ H(a)) +C = F(b)-F(a)+C1 +G(b)-G(a)+C2+...+H(b)-H(a)+Cn=b b b = т f(x)dx+ т g(x)dx+...+ т h(x)dx

Набор стандартных картинок (рис. 4, 5, 6, 7, 8)

Рис. 4

Рис. 6 Рис. 7

Т.к. f(x)<0, то формулу Ньютона-Лейбница составить нельзя, теорема верна только для f(x)і0.

Надо: рассмотреть симметрию функции относительно оси OX. ABCD®A"B"CD b

S(ABCD)=S(A"B"CD) = т -f(x)dx

S= т f(x)dx = т g(x)dx

S = т (f(x)-g(x))dx+т(g(x)-f(x))dx

S= т (f(x)+m-g(x)-m)dx =

т (f(x)- g(x))dx

т ((f(x)-g(x))dx

S= т (f(x)+m-g(x)-m)dx =

Т (f(x)- g(x))dx

Если на отрезке f(x)іg(x), то площадь между этими графиками равна

т ((f(x)-g(x))dx

Функции f(x) и g(x) произвольные и неотрицательные

S=т f(x)dx - т g(x)dx = т (f(x)-g(x))dx

Фигура, ограниченная графиком непрерывной неотрицательной на отрезке $$ функции $f(x)$ и прямыми $y=0, \ x=a$ и $x=b$, называется криволинейной трапецией.

Площадь соответствующей криволинейной трапеции вычисляется по формуле:

$S=\int\limits_{a}^{b}{f(x)dx}.$ (*)

Задачи на нахождение площади криволинейной трапеции мы будем условно делить на $4$ типа. Рассмотрим каждый тип подробнее.

I тип: криволинейная трапеция задана явно. Тогда сразу применяем формулу (*).

Например, найти площадь криволинейной трапеции, ограниченной графиком функции $y=4-(x-2)^{2}$, и прямыми $y=0, \ x=1$ и $x=3$.

Нарисуем эту криволинейную трапецию.

Применяя формулу (*), найдём площадь этой криволинейной трапеции.

$S=\int\limits_{1}^{3}{\left(4-(x-2)^{2}\right)dx}=\int\limits_{1}^{3}{4dx}-\int\limits_{1}^{3}{(x-2)^{2}dx}=4x|_{1}^{3} – \left.\frac{(x-2)^{3}}{3}\right|_{1}^{3}=$

$=4(3-1)-\frac{1}{3}\left((3-2)^{3}-(1-2)^{3}\right)=4 \cdot 2 – \frac{1}{3}\left((1)^{3}-(-1)^{3}\right) = 8 – \frac{1}{3}(1+1) =$

$=8-\frac{2}{3}=7\frac{1}{3}$ (ед.$^{2}$).

II тип: криволинейная трапеция задана неявно. У этого случая обычно не задаются или задаются частично прямые $x=a, \ x=b$. В этом случае нужно найти точки пересечения функций $y=f(x)$ и $y=0$. Эти точки и будут точками $a$ и $b$.

Например, найти площадь фигуры, ограниченной графиками функций $y=1-x^{2}$ и $y=0$.

Найдём точки пересечения. Для этого приравняем правые части функций.

Таким образом, $a=-1$, а $b=1$. Нарисуем эту криволинейную трапецию.

Найдём площадь этой криволинейной трапеции.

$S=\int\limits_{-1}^{1}{\left(1-x^{2}\right)dx}=\int\limits_{-1}^{1}{1dx}-\int\limits_{-1}^{1}{x^{2}dx}=x|_{-1}^{1} – \left.\frac{x^{3}}{3}\right|_{-1}^{1}=$

$=(1-(-1))-\frac{1}{3}\left(1^{3}-(-1)^{3}\right)=2 – \frac{1}{3}\left(1+1\right) = 2 – \frac{2}{3} = 1\frac{1}{3}$ (ед.$^{2}$).

III тип: площадь фигуры, ограниченной пересечением двух непрерывных неотрицательных функций. Эта фигура не будет криволинейной трапецией, а значит с помощью формулы (*) её площадь не вычислишь. Как же быть? Оказывается, площадь этой фигуры можно найти как разность площадей криволинейных трапеций, ограниченных верхней функцией и $y=0$ ($S_{uf}$), и нижней функцией и $y=0$ ($S_{lf}$), где в роли $x=a, \ x=b$ выступают координаты по $x$ точек пересечения данных функций, т.е.

$S=S_{uf}-S_{lf}$. (**)

Самое главное при вычислении таких площадей – не “промахнуться” с выбором верхней и нижней функции.

Например, найти площадь фигуры, ограниченной функциями $y=x^{2}$ и $y=x+6$.

Найдём точки пересечения этих графиков:

По теореме Виета,

$x_{1}=-2, \ x_{2}=3.$

То есть, $a=-2, \ b=3$. Изобразим фигуру:

Таким образом, верхняя функция – $y=x+6$, а нижняя – $y=x^{2}$. Далее, найдём $S_{uf}$ и $S_{lf}$ по формуле (*).

$S_{uf}=\int\limits_{-2}^{3}{(x+6)dx}=\int\limits_{-2}^{3}{xdx}+\int\limits_{-2}^{3}{6dx}=\left.\frac{x^{2}}{2}\right|_{-2}^{3} + 6x|_{-2}^{3}= 32,5$ (ед.$^{2}$).

$S_{lf}=\int\limits_{-2}^{3}{x^{2}dx}=\left.\frac{x^{3}}{3}\right|_{-2}^{3} = \frac{35}{3}$ (ед.$^{2}$).

Подставим найденное в (**) и получим:

$S=32,5-\frac{35}{3}= \frac{125}{6}$ (ед.$^{2}$).

IV тип: площадь фигуры, ограниченной функцией (-ями), не удовлетворяющей(-ими) условию неотрицательности. Для того, чтобы найти площадь такой фигуры нужно симметрично относительно оси $Ox$ (иными словами, поставить “минусы” перед функциями) отобразить область и с помощью способов, изложенных в типах I – III, найти площадь отображённой области. Эта площадь и будет искомой площадью. Предварительно, возможно, вам придётся найти точки пересечения графиков функций.

Например, найти площадь фигуры, ограниченной графиками функций $y=x^{2}-1$ и $y=0$.

Найдём точки пересечения графиков функций:

т.е. $a=-1$, а $b=1$. Начертим область.

Симметрично отобразим область:

$y=0 \ \Rightarrow \ y=-0=0$

$y=x^{2}-1 \ \Rightarrow \ y= -(x^{2}-1) = 1-x^{2}$.

Получится криволинейная трапеция, ограниченная графиком функции $y=1-x^{2}$ и $y=0$. Это задача на нахождение криволинейной трапеции второго типа. Мы её уже решали. Ответ был такой: $S= 1\frac{1}{3}$ (ед.$^{2}$). Значит, площадь искомой криволинейной трапеции равна:

$S=1\frac{1}{3}$ (ед.$^{2}$).

    У этого термина существуют и другие значения, см. Трапеция (значения). Трапеция (от др. греч. τραπέζιον «столик»; … Википедия

    I Площадь одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П.… …

    Методы получения численных решений различных задач путём графических построений. Г. в. (графическое умножение, графическое решение уравнений, графическое интегрирование и т. д.) представляют систему построений, повторяющих или заменяющих… … Большая советская энциклопедия

    Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… … Большая советская энциклопедия

    Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру C и двойным интегралом по области D, ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в … Википедия

В разделе 4.3 уже отмечалось, что определенный интеграл () от

неотрицательной функции численно равен площади криволинейной трапеции, ограниченной графиком функции = (), прямыми = , = и= 0.

Пример 4.24. Вычислить площадь фигуры, заключенной между осью и синусоидой = sin , (рисунок 4.6 ).

sin = − cos 0

= −(cos − cos 0) = 2.

Если фигура не является криволинейной трапецией, то ее площадь стараются представить в виде суммы или разности площадей фигур, являющихся криволинейными трапециями. В частности, справедлива теорема.

Теорема 4.13. Если фигура ограничена снизу и сверху графиками непрерывных функций = 1 (), = 2 () (не обязательно неотрицательных, (рисунок 4.7 ), то ее площадь можно найти по формуле

2 () − 1 () .

Пример 4.25. Вычислить площадь фигуры, ограниченной кривой = 4 и прямыми = и = 4.

y = f2 (x)

y = f1 (x)

Рисунок 4.6

Рисунок 4.7

Решение. Построим

плоскости

(рисунок 4.8 ). Очевидно,

1 () = 4 , 2 () = ,

= ∫

2 − 4 ln

2 = 8 − 4 ln 4 − (2 − 4 ln 2) = 2(3 − 2 ln 2).

Часть I. Теория

Глава 4. Теория интегрирования 4.4. Приложения интеграла. Несобственные интегралы

Рисунок 4.8

4.4.2. Длина дуги кривой

Вычисление длин кривых также приводит к интегралам. Пусть функция= () непрерывна на отрезке [ ; ] и дифференцируема на интервале (;). Ее график представляет некоторую кривую, (; ()), (; ()) (рисунок 4.9 ). Кривую разобьем точками 0 = , 1 , 2 , . . . , = напроизвольных частей. Соединим две соседние точки −1 и хордами,= 1, 2, . . . , . Получим -звенную ломаную, вписанную в кривую. Пусть

есть длина хорды −1 , = 1, 2, . . . , = max16 6 . Длина ломаной будет выражаться формулой

Естественно определить длину кривой как предельное значение длин ломаных, когда → 0, т.е.

Пусть есть абсциссы точек, = 1, 2, . . . ,

< < . . . < = .

Тогда координаты точек есть (; ()), и, пользуясь формулой для расстояния между двумя точками , найдем

C n−1

C k 1C k

Следовательно, есть интегральная сумма для функции √ 1 + (′ ())2 на отрезке [ ; ]. Тогда на основании равенств (4.31) имеем:

= ∫

1 + (′ ())2

Пример 4.26. Найти длину графика = 2

между = 0 и = 3.

Решение. Построим график указанной функции (рисунок 4.10 ).

y = 2

√x 3

Рисунок 4.10

По формуле (4.33) находим:

= ∫ 3

= ∫ 3 √

= ∫ 3 √

1 + (2 1 )2

1 + (′ ())2

(+ 1)2

3 (+ 1)2 0 = 3 (8 − 1) = 3 .









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

Оборудование : маркерная доска, компьютер, мультимедиа-проектор

Тип урока : урок-лекция

Цели урока :

  • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
  • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
  • образовательные : сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

Метод обучения: объяснительно-иллюстративный.

Ход урока

В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

Криволинейная трапеция (слайд 1 )

Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м. ), прямыми x = a и x = b и осью абсцисс

Различные виды криволинейных трапеций (слайд 2)

Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

Площадь криволинейной трапеции (слайд 3)

Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

И на отрезке [a; b ] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

Решение: (по алгоритму слайд 3 )

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х 2 :

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b ]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5) . Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b ], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b ] на n частей точками х 0 =а, х1,… ,хn = b. Длину k- го обозначим через хk = xk – xk-1 . Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м .)

Суммы вида называются интегральными суммами для функции f . (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b ] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Определение:

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. =(щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т.(щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

Задания: (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5 )

2. Составить интегралы по чертежу (проверяем по слайду 6 )

3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7 )

Нахождение площадей плоских фигур (слайд 8 )

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.) . Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  1. Построить графики функций
  2. Спроецировать точки пересечения графиков на ось абсцисс
  3. Заштриховать фигуру, полученную при пересечении графиков
  4. Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  5. Вычислить площадь каждой из них
  6. Найти разность или сумму площадей

Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

Список литературы

  1. Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. - М: Просвещение, 1983.
  2. Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. - М: Просвещение, 1991.
  3. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. - М: Академия, 2010.
  4. Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. - М: Просвещение, 2010.
  5. Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.