Ультрафильтрация сточных вод. Ультрафильтрация воды. Какие примеси удаляются

Ультрафильтрация - это мембранный процесс разделения растворов, осмотическое давление которых мало. Этот метод используется при отделении сравнительно высокомолекулярных веществ, взвешенных частиц, коллоидов и др. Ультрафильтрация, по сравнению с обратным осмосом, более высокопроизводительный процесс, так как высокая проницаемость мембран достигается при давлении 0,2--1 МПа.

В зависимости от целей ультрафильтрационного процесса мембраны пропускают:

растворитель и только низкомолекулярные соединения (разделения высоко- и низкомолекулярных соединений и концентрирование высокомолекулярных соединений);

только растворитель (концентрирование высокомолекулярных соединений);

растворитель и фракции высокомолекулярных соединений с определенными молекулярной массой или размером макромолекулярных клубков (фракционирование полимерных соединений).

Ультрафильтрация, в отличие от обратного осмоса, применяют для разделения систем, в которых молекулярная масса растворенных компонентов намного большая за молекулярную массу растворителя (воды). На практике ультрафильтрацию используют тогда, когда хотя бы один из компонентов раствора имеет молекулярную массу свыше 500 дальтон.

Движущей силой процесса ультрафильтрации, как и обратного осмоса, есть различие давлений с обеих сторон мембраны, но, поскольку осмотические давления растворов высокомолекулярных соединений, как правило, низкие сравнительно с рабочим давлением, то во время определения параметров ультрафильтрации их не учитывают. Если ультрафильтрационная мембрана не способная задерживать низкомолекулярные соединения (в особенности электролиты), то и в этом случае осмотические давления растворов низкомолекулярных соединений также не учитываются во время определения движущей силы процесса. За высоких концентраций растворов полимеров, когда осмотические давления достигают значений, соизмеримых с рабочим давлением, движущую силу определяют за уравнением

Р=Р -1.

Эффективность ультрафильтрационного разделения растворителей веществ определяют за конкретным соотношением двух основных составных процесса - равновесной и неравновесной. Если взнос равновесной составной, что выражается через коэффициент распределения раскрытого вещества между мембраной и раствором, будет меньшим, то за всех других одинаковых условий мембрана лучше будет задерживать данное растворенное вещество. В случае ультрафильтрации основной взнос в определении величины коэффициента распределения принадлежит стеричним ограничением, обычно с учетом важной роли поверхностных свойств мембран (гидрофильности, заряда, химической природы функциональных групп и т.п.).

Реализация неравновесной составной процесса, когда мембрана находится в системе, где существует градиент концентрации и давления с обеих ее сторон, также имеет особенности сравнительно с обратноосмотическими мембранами. Это связано с высокой проницаемостью сравнительно крупнопористых (диаметр пор 5-500 нм) ультрафильтрационных мембран и низкими коэффициентами диффузии макромолекул и коллоидов в растворе, которые на несколько порядков ниже, чем низкомолекулярных соединений. Диффузное перенесение раскрытых высокомолекулярных соединений и коллоидов чрезвычайно маленькое, и эта особенность предопределяет практически неминуемое их накопление на поверхности ультрафильтрационных мембран (гелеобразование), что существенным образом изменяет поровую структуру и свойства мембраны. Эти изменения оказываются в значительном или катастрофическом снижении объемного потока растворителя сквозь мембрану и возрастании коэффициента задерживания, то есть гелиевый пласт способный к самозадержанию и фактически выполняет роль мембраны.

Итак, решения конкретной задачи ультрафильтрационного разделения часто состоит в компромиссном решении: использования менее проницаемой мембраны, но такой, что имеет высокую степень монодисперсности пор, определенный заряд поверхности или степень гидрофильности.

В отличие от обратного осмоса, когда в случае повышения задерживания мембранами их проницаемость уменьшается, во время ультрафильтрации в зависимости от условий процесса эти характеристики могут одновременно повышаться и снижаться.

Основные параметры разделения - задерживание и производительность определяются верхним активным (селективным) пластом мембраны. Маленькая его толщина предопределяет низкое гидродинамическое сопротивление потоку фильтрата и, значит, высокую проницаемость. Изменяя коллоидно-химические свойства этого пласта (пористость, гидрофильность, заряд поверхности и т.п.), можно дополнительно регулировать его задерживание и проницаемость.

В отличие от обратноосмотических мембран, которые обязательно должны быть гидрофильными (это связано с механизмом опреснительного действия мембран), ультрафильтрационные мембраны, как правило, имеют низкую гидрофильность или даже гидрофобные.

Преимуществами методов гипер- и ультрафильтрами являются: простота аппаратуры; возможность разделения растворов при нормальной температуре, выделения цепных продуктов, одновременной очистки воды от органических, неорганических и бактериальных загрязнений; малая зависимость эффективности очистки от концентрации загрязнений в воде. Наряду с этим имеются и существенные недостатки. К ним относится явление концентрационной поляризации, заключающееся в увеличении концентрации растворенного вещества у поверхности мембраны вследствие преимущественного переноса через нее растворителя, а также необходимость проведения процесса при повышенном давлении в системе.

Промышленные аппараты обратного осмоса и ультрафильтрации.

В настоящее время применяют следующие типы аппаратов, различающиеся способом размещения мембран.

  • 1. Аппараты пита "фильтр-пресс" с плоскокамерными фильтрующими элементами. Применяют при невысокой производительности установок. Пакет фильтрующих элементов зажимается между двумя фланцами и стягивается болтами. Основной недостаток этих аппаратов - невысокая удельная площадь поверхности мембран (60--300м 2 на 1м 3 объема аппарата) и большая металлоемкость.
  • 2. Аппараты с трубчатыми фильтрующими элементами (рис.3.3). Имеют ряд преимуществ: простота конструкции, малая металлоемкость, легкость турболизации раствора. Недостаток аппаратов: невысокая удельная площадь поверхности мембран (100--200 м 2/м 3), трудность замены вышедших из строя мембран.

3. Аппараты с фильтрующими элементами рулонного или спирального типа.

Имеют большую удельную площадь поверхности мембран (300-800 м 2/м 3). Полупроницаемая мембрана с подложкой свернута в виде спирали и образует цилиндрический модуль диаметром до 100мм и длинной до одного метра (рис. 3.4). Один модуль системы "Галф-Аяко" с площадью поверхности мембраны 4,65м 2 и объемом около 0,007 м 3 имеет пропускную способность примерно 1,8 м 3 воды в сутки. Недостаток этих аппаратов - сложность монтажа и смены мембран.

4. Аппараты с мембранами: из полых волокон малого диаметра (45 - 200 мкм). Волокна (из ацетатцеллюлозы, нейлона и др.) собираются в пучки длинной 2 - 3м, которые прикрепляются к стенкам аппарата с помощью эпоксидной смолы (рис.3.5).


Удельная площадь поверхности мембран в этих аппаратах достигает 20 000 м 2/м 3. Расположение волокон может быть линейным, что требует заделки в две трубные решетки, или U - образным с заделкой в одну трубную решетку. Модель фирмы "Дюпон" имеет диаметр 35,5см, длину 1м и содержит 900 000 волокон общей поверхностью около 1700м 2.

Аппараты с мембранами из полых волокон компактны и высокопроизводительны. Недостаток аппаратов - трудность замены поврежденных волокон. Если разделяемый раствор протекает внутри волокон, то необходима тщательная очистка его от механических загрязнений.

Характеристика установки фирмы "Дюпон" производительностью 40м 3 очищенной воды в сутки приведена ниже:

Выпускаются установки производительностью 5--1000м 3/сутки.

Примеры применения метода обратного осмоса и ультрафильтрации

Обратный осмос и ультрафильтрация могут успешно использоваться для очистки сточных вод химических, нефтехимических, целлюлозно-бумажных и других производств.

Результаты исследований по очистке и концентрированию сточных вод методом обратного осмоса при давлении 4,1МПа представлены в таблице 1

Из приведенных данных видно, что метод обратного осмоса обеспечивает эффективную очистку сточных вод от минеральных примесей. Получаемый концентрированный раствор может быть направлен на регенерацию для извлечения и использования ценных примесей. Метод гиперфильтрационной очистки является перспективным для регенерации солей тяжелых металлов из сточных вод.

С помощью ацетатцеллюлозных мембран удастся концентрировать хромсодержащие сточные воды гальванических производств в 50 - 100 раз при оптимальном давлении 8 - 10 МПа. На установке обратного осмоса достигнута 93 %-ная эффективность очистки сточных вод от хрома. Полученный концентрированный раствор направляют затем на катионитовые фильтры для очистки от ионов Na+, Ca+, Fe2+ и Fe3+ и возвращают в производство.

Экспериментальные данные показывают, что при давлении 3 - 3,5МПа и селективности мембран по NaCl, равной 93,5 %, обеспечивается солезадержание по растворам K2Cr2O7, CuSO4 и ZnSO4 на 96,5 - 99,0%.

На промышленной установке производительностью 0,45 м 3/ч, работающей под давлением 3 МПа, из сточных вод гальванического производства извлекаются NiCl2 и NiSO4. Полученные соли никеля вновь используются в производстве. Смена ацетатцеллюлозных мембран проводился oдин раз в 1,5 года.

С помощью полупроницаемых мембран можно концентрировать растворы щелочей, аммонийных, фосфатных и нитратных солей при производстве удобрений, глицерина, спирта и др.

Метод обратного осмоса может быть успешно использован для "третичной" очистки сточных вод от соединений фосфора и азота. Результаты длительной эксплуатации полупромышленной установки обратного осмоса для очистки бытовых сточных вод показали, что содержание фосфора снижалось на 94%, аммиака - на 90 % и нитратов - на 64 %.

Очистка сточных вод обратным осмосом без их предварительной обработки проводится на опытной установке в Сан-Диего (США). Растворенные соли удаляются из воды более чем на 95%, а щелочно земельные элементы, нитрат-, фосфат- и сульфат-ионы - более чем на 98%. После очистки вода не является питьевой, но может употребляться в сельском хозяйстве и промышленности, в том числе в системах оборотного водоснабжения. Использование необработанных вод прводило к механическим повреждениям мембран твердыми частицами загрязнений и высокой степени износа питательных насосов. Во избежание этого введено предварительное фильтрование сточных вод через стенку, а также покрытие мембран прочным составом.

В результате применения обратного осмоса для очистки сточных вод загрязненных радиоактивными веществами, активность воды в большинстве случае снижается на 2 - 3 порядка.

Ультрафильтрация в промышленных масштабах применяют для регенерации солей серебра из растворов, образующихся в производстве фотоэмульсий.

Стоимость очистки воды зависит от производительности установки и степени извлечения ценных примесей. Следует отметить, что стоимость смены мембран весьма высока и составляет от 4 до 12 долларов за 1м 2. Тем не менее затраты на очистку воды обратным осмосом и ультрафильтрацией, особенно на крупных установках, не превышает стоимости очистки воды широко известными методами.

Для России и стран СНГ проблемой государственного масштаба стало снабжение населения качественной водопроводной водой. Традиционные методы очистки воды плохо справляются с удалением значительного количества новых техногенных загрязняющих веществ.

Изношенность большинства водопроводных магистралей приводит ко вторичному загрязнению воды и учащению аварийных выбросов. Традиционные бытовые магистральные фильтры не справляются с задачей качественной очистки воды. Решением этой проблемы является использование новейшего и перспективного метода ультрафильтрации - мембранного метода очистки воды.

Компания Waterman предлагает Вашему вниманиюустановки ультрафильтрации, успешно решающие целый комплекс задач по очистке воды. Наши специалисты разработают оптимальную технологическую схему обработки воды с использованием технологий ультрафильтрации, осуществят проектирование, монтаж и запуск системы в эксплуатацию.

В промышленном масштабе метод ультрафильтрации для очистки воды стал применяться с конца ХХ века. В год суммарный прирост объемов воды, очищенной с помощью ультрафильтрации, составляет около 25 %.

Острота проблемы с чистой водопроводной водой в странах Азии (таких как Малайзия, Сингапур, Тайвань, Китай), поспособствовала созданию в 1985 году исследовательского центра в Сингапуре.

Центр разработал надёжную и недорогую для этих стран технологию ультрафильтрации. Сейчас бытовой модуль ультрафильтрации в азиатских семьях (например, в Малайзии) - такой же атрибут быта, как телевизор или холодильник.

Технология ультрафильтрации, усовершенствованная и проверенная временем, не осталась незамеченной Европой и Америкой.

Области применения технологии ультрафильтрации

С конца ХХ в. метод ультрафильтрации стал использоваться в промышленном масштабе. На сегодняшний день в мире работают сотни производительностью до 4105 м 3 /сут. Около 25 % составляет ежегодный суммарный прирост объемов воды, обработанной методом ультрафильтрации. Ультрафильтрацией обеспечивается качественная очистка вод поверхностных источников, питьевой, оборотной и технологической воды при минимуме эксплуатационных затрат. Ниже приведён перечень основных областей использования ультрафильтрационной технологии.




Использование метода ультрафильтрации для дезинфекции воды

С помощью стандартных модулей ультрафильтрации производится удаление вирусов и бактерий на уровне не менее 99,99%. В отличие от традиционных методов дезинфекции воды (хлорирование, ультрафиолетовое обеззараживание, озонирование и др.), при ультрафильтрации микроорганизмы физически устраняются из воды. Это достигается за счет того, что в ультрафильтрационной мембране диаметр пор значительно меньше размеров вирусов или бактерий (пора – 0,01 мкм, бактерия – 0,4…1,0 мкм, вирус – 0,02…0,4 мкм). Таким образом, микроорганизмы, находящиеся в воде, не могут проникнуть через такой барьер. В результате устраняется необходимость первичного хлорирования воды, а обеззараживание осуществляется уже непосредственно перед подачей воды потребителю.

Обработка ультрафильтрацией хозяйственно-бытовых и промышленных сточных вод

Во всем мире стараются повторно использовать очищенные сточные воды, которые гораздо выгоднее не сбрасывать в открытый водоем, а после обработки ультрафильтрацией направлять для промышленного использования. Тем самым техногенная нагрузка на водоёмы хозяйственно-питьевого назначения значительно снижается.

Использование ультрафильтрации в качестве предварительной ступени перед системами обратного осмоса

Обычно в для предварительной очистки используются мешочные или патронные фильтры (рейтинг фильтрации 5 мкм). Замена их на ультрафильтрационные модули, имеющие более длительный срок службы, позволит снизить эксплуатационные расходы.

Применение ультрафильтрационных модулей позволяет стабилизировать коллоидный индекс SDI на уровне 1-2, в результате значительно сокращается частота промывок и замен мембран обратного осмоса.

Использование в качестве предварительной фильтрации перед обратным осмосом технологии осветлитель + флокулянт требует тщательного выбора флокулянтов. Катионные флокулянты нельзя использовать, так как обратноосмотические мембраны имеют отрицательный заряд. Анионные и неионогенные флокулянты используются при минимальных дозах. Сложно после блокировки пор флокулянтом восстановить работоспособность мембран. Эта проблема полностью отсутствует при ультрафильтрационной обработке.

Обратноосмотические мембраны при определенных условиях подвержены биообрастанию. Возникновению этой проблемы способствует высокая температура исходной воды, большое содержание “органики” (перманганатная окисляемость более 3,0 мгО 2 /л), длительные межпромывочные циклы, значительная обсемененность исходной воды.

Значительное количество крупномолекулярной “органики”, содержащейся в воде при традиционной технологии осветления, может заблокировать поры обратноосмотических мембран. Процесс ультрафильтрации делает возможной эффективную очистку обратноосмотическими системами воды с очень высоким потенциалом биообрастания (например, очищенными хозяйственно-бытовыми сточными водами).

Ультрафильтрация промывных вод фильтров обезжелезивания, осветления и сорбции

Степень использования воды повышается до 99,8 %, если промывные воды подвергать ультрафильтрации. Этим целям служат ультрафильтрационные фильтр-прессы, которые обеспечивают механическое обезвоживание осадков.

Использование ультрафильтрации для осветления воды

При оценивании новой технологии обращают внимание на себестоимость и качество получаемого продукта. Более низкая себестоимость осветленной воды высокого качества обеспечивается за счет компактности установок ультрафильтрации, простоты их обслуживания и незначительного расхода химических реагентов. В конечном итоге себестоимость осветленной воды, полученной с помощью ультрафильтрации, определяется качеством исходной воды и производительностью установки. Себестоимость очищенной воды для небольших коммерческих установок (производительность менее 100 м 3 /час) находится в пределах 1,5–3,5 руб/м 3 , для установок производительностью более 100 м 3 /час себестоимость очищенной воды ниже: 0,5–2,0 руб/м 3 .

Осветление воды при розливе в бутыли (осветление питьевой и минеральной воды)

Чистота природного источника воды не избавляет от необходимости перед розливом питьевой воды в бутыли пропускать ее через фильтр тонкой очистки.

Очистка воды с помощью чаще всего применяемых для этой цели механических фильтров картриджного типа (например, Big Blue 20) или мешочного типа 1-5 мкм не обеспечивает требуемую степень фильтрации. Наиболее перспективным методом улучшения качества воды (природных вод) является осветление воды методом ультрафильтрации (улучшение качества воды методом стерилизующей ультрафильтрации).

Ультрафильтрация как предварительная ступень очистки перед ионообменными фильтрами

Большие сложности возникают при использовании (особенно в промышленности и энергетике). Гранулометрический состав воды редко учитывается, когда проектируются системы фильтрации воды. Микрофильтрационные и осветлительные фильтры предварительной очистки эффективно удаляют взвешенные частицы размером свыше 1,0 мкм. Ионообменные смолы не пропускают коллоиды величиной 0,1…1,0 мкм, но вместе с тем происходит их «закупоривание». Результатом «закупоривания» является снижение интенсивности ионного обмена и ресурса смол. Чтобы этого избежать, нужно уменьшить мутность исходной воды ниже 3 NTU (нефелометрические единицы мутности). Это позволяет сделать ультрафильтрация (обеспечивает мутность до 0,1 NTU).

Часто имеющиеся в речной воде и воде артезианских скважин коллоиды SiO2 вызывают проблемы в процессе ионного обмена. При значении рН меньше 7 (после H-катионирования) может происходить полимеризация SiO 2 (молекулы объединяются в длинные цепочки). С поверхности смолы такие образования удалить чрезвычайно сложно: требуются длительные слабоэффективные промывки и восстановление ионообменного материала. Для предотвращения необратимого «закупоривания» ионитов достаточно установить перед ионообменными фильтрами систему ультрафильтрации, удаляющую более 95 (а иногда и более 98) % коллоидов SiO 2 . При определенных условиях, например, при наличии в системе не промываемых химическими растворами пространств, происходит рост количества микроорганизмов, которые также служат причиной “закупоривания” ионообменных смол. Кроме того, бывает так, что уплотнения, клапаны и необработанные поверхности, соприкасающиеся с водой, не соответствуют санитарным требованиям и техническим нормам. В таких областях при благоприятных температуре и уровне рН процесс биообрастания активизируется. Использование ультрафильтрации позволяет значительно замедлить протекание этого процесса на поверхности смол.

В нефтехимической, химической промышленности и при очистке сточных вод ионообменные смолы загрязняются содержащимися в воде маслами. Часть масел легко удаляется в процессе осаждения, флотации или коалесценции. Но химически или механически эмульгированные масла плохо удаляются. Часто бывает дешевле заменить смолы, чем пробовать очистить их от масел. Эту проблему решает предварительная ультрафильтрация, обеспечивающая удаление до 99% эмульгированных масел перед последующей очисткой воды смолами.

Часто поверхность фильтрующих гранул и пространство между ними загрязняются высокомолекулярными органическими соединениями. Решить проблему пытаются использованием активированного угля или определённой смеси ионообменных смол. Однако активированный уголь имеет небольшой срок службы и обрастает микроорганизмами, а смолы приходится часто регенерировать (порой неэффективно). Учитывая повышенные эксплуатационные расходы и простои оборудования, мы видим, что ультрафильтрация является экономически более оправданным методом очистки воды от органических примесей.

Обработка ультрафильтрацией вод поверхностных источников и речной, озерной воды

Широко используемые в коммунальном хозяйстве и промышленности России методы осаждения и фильтрования с предварительной коагуляцией с середины ХХ века не претерпели радикальных изменений. Коагуляция эффективно удаляет примеси природного происхождения. Но произошел значительный рост количества техногенных загрязняющих воду веществ, для удаления которых методы отстаивания и фильтрования не всегда могут быть эффективными. Около 1000 контролируемых химических веществ насчитывается по новым санитарным нормативам. При первичном хлорировании воды происходит образование сотен хлорорганических соединений, что вызывает большие проблемы.

О содержании органических веществ судят, как правило, по перманганатной окисляемости воды. Из-за трудностей окисления техногенных органических соединений перманганатом калия истинное качество воды по содержанию «органики» не отражается этим показателем. В процессе наблюдений в течение недели за составом воды в р. Кама замечено, что перманганатная окисляемость менялась в диапазоне от 3,36 до 4,16 мгО 2 /л, в то время как бихроматная окисляемость колебалась от 15 до 43 мгО 2 /л. Колебания показателя обусловлены постоянным изменением состава органических соединений. В таких условиях трудно выбрать оптимальную дозу коагулянта, что способствует нестабильной работе осветлителей и дополнительной нагрузке на последующие стадии очистки. Введение таких дополнительных стадий очистки как озонирование, сорбция активированным углем и др. увеличивает эксплуатационные расходы и, соответственно, себестоимость очищенной воды.

Трудности в обеспечении населения России качественной питьевой водой привели к том, что это стало действительно государственной проблемой. Традиционно используемые способы получения чистой питьевой воды с использованием хлорирования, коагулирования, флотации, отстаивания и фильтрования, обладают следующими существенными недостатками:

  • нестабильность качества очищенной воды;
  • большие ресурсоёмкость и габариты оборудования;
  • опасность образования канцерогенов при использовании хлорсодержащих реагентов при обеззараживании воды;
  • большие расходы дорогих химических реагентов, а также решение задач организации их приготовления и хранения.

Ультрафильтрация лишена вышеперечисленных недостатков. С ее помощью вода очищается от взвешенных частиц, бактерий, вирусов, водорослей, коллоидов и высокомолекулярных органических соединений. Значительно увеличивается эффект осветления и степень извлечения органических соединений при предварительной коагуляции. Эффективность метода ультрафильтрации мало зависит от изменений дозы коагулянта, так как отфильтровывание образующихся хлопьев производится независимо от их размера. Также не требуется продолжительное время для формирования крупных хлопьев и отпадает необходимость в камере хлопьеобразования. Вода, очищенная с помощью метода ультрафильтрации, безопасна по микробиологии и обладает стабильно высоким качеством, которое не зависит от состава исходной воды.

Таким образом, достоинства метода ультрафильтрации - высокая эффективность очистки, низкие эксплуатационные затраты и надежность оборудования - делают его применение выгодным мероприятием. Специалисты компании Waterman помогут Вам его осуществить !

Наша компания предоставляет свои услуги по продаже, проектированию и установке систем водоочистки как промышленным производствам любого масштаба, так ичастным лицам. Мы работаем качественно и оперативно !

Несмотря на то, что все большее внимание, уделяется охране окружающей среды, общемировой тенденцией является ухудшение качества воды в водозаборах. Не исключением являются и водозаборы РФ. В действующем СанПин 2.1.4.1074-01 нормируется содержание тридцати неорганических соединений и элементов и около 680 индивидуальных органических соединений, изомеров и смесей, которые классифицируются как «вредные вещества в питьевой воде ». Несмотря на столь внушительный список контролируемых показателей, уже сейчас можно с уверенностью утверждать, что употребление воды в пищу (равно как и использование в производстве пищевых субстанций) прошедшей подготовку только на городских очистных сооружениях, не только не улучшает здоровье, но и в ряде случаев для него опасно (вспомним хотя бы вспышку вирусного гепатита в Нижнем - Новгороде). Такое положение вещей связано с тем, что оборудование большинства станций водоподготовки устарело и требует реконструкции . Кроме того, зачастую, старые технологии водоподготовки (это в основном коагуляция, хлорирование воды) в «одиночку» справиться с новыми техногенными загрязнителями не в состоянии.

В будущем, в связи с нарастанием опасности техногенных катастроф, не приходится надеяться на улучшение качества воды в водозаборах. Тоже время можно быть уверенным во внедрении высокочувствительных (вероятно маркерных) методов мониторинга гигиенического качества воды и ужесточении нормативов по содержанию в воде (всех видов) токсичных соединений. В связи с этим при проектировании новых станций водоподготовки , которые в идеале должны быть устойчивы к аварийным загрязнением водозаборов, необходимо использовать технологии, обеспечивающие исключительную стабильность качества питьевой воды. На современном этапе таким требованиям отвечают только мембранные технологии водоподготовки (ультрафильтрация воды , нанофильтрация воды, обратный осмос) в комплексе с химическими технологиями (озонирование, и другие методы разрушения органических соединений в воде). Из всех мембранных методов водоподготовки для подготовки воды питьевого качества наиболее подходящим является ультрафильтрация воды .

Введение

Под ультрафильтрацией воды (УФ) понимается процесс удаления взвешенных и агломератов коллоидных частиц, в диапазоне размеров от 0.03 до 0.1 мкм, на мембранах низкого давления. В мире установки ультрафильтрации воды широко используются для обработки поверхностных или грунтовых вод , в том числе и для производства питьевой воды. Применение ультрафильтрации позволяет полностью решить проблему удаления из воды взвесей агломератов коллоидов, микроорганизмов. Фильтрат, полученный на установках ультрафильтрации имеет следующие типичные характеристики: значения SDI менее 2; взвешенные вещества менее 0,5 мг/л; содержание органических соединений в воде в сочетании с коагуляцией снижается в 2-3 раза; цветность не более 10-15 ; качество фильтрата стабильно и не зависит от флуктуаций качества питающей воды.

Ультрафильтрационная мембрана Hydracap изготавливается из полых волокон гидрофильного полиэстерсульфона (PES). Мембрана устойчива к воздействию хлора и имеет ресурс 200 000 ppm *часов по активному хлору. В цикле химической мойки мембрана может работать в широком диапазоне рН (2-13), при этом оставаясь устойчивой к биологическому загрязнению. Мембрана изготовлена из полых волокон с внутренним диаметром 0,8 или 1,2 мм. Стандартный модуль Hydracap 60 включает в себя 13200 полых волокон. Мембраны с волокнами диаметром 0,8 мм используются при значении мутности до 200 мг/л. Для более мутной воды рекомендуется использовать мембраны с волокнами диаметром 1,2 мм.

Параметр селективности стандартной мембраны ультрафильтрации составляет 100-150 кДа, что соответствует размеру поры примерно 0,025 мкм. Таким образом, мембрана обеспечивает эффективный барьер для большинства вирусов (на 4 порядка), бактерий (на 6 порядков) и Cryptosporidium oocysts .

На рис.1 представлена диаграмма ультрафильтрационной системы водоподготовки , которая состоит из питающего насоса, грязевика, ультрафильтрационного модуля, бака обратной промывки, насоса обратной промывки и системы химической очистки и дезинфекции.

Рис. 1. Схема полупромышленной ультрафильтрационной установки водоподготовки.

Питающая вода под давлением подается в систему ультрафильтрационной водоподготовки при помощи питающего насоса. Оценочный максимум дифференциального давления через всю систему около 2,5 бар, учитывающий потери на трение, а также падение давления на мембране, которое может увеличиваться из-за ее постепенного загрязнения и достигать значения 1,0 бар.

Периодически проводится обратная промывка модуля ультрафильтрации воды, для которой используется фильтрат, собранный в бак обратной промывки. Во время обратной промывки из системы удаляются загрязнения, и восстанавливается начальное падение давления на мембране.

Ультрафильтрационная система водоподготовки работает в автоматическом режиме и управляется микропроцессорным контроллером (PLC), который координирует работу всех компонентов системы, управляя работой насосов, вентилей и дозирующего оборудования.

В воду, которая питает ультрафильтрационную систему водоподготовки, может осуществляться дозирование коагулянта. Данный прием особенно эффективен, если имеют место периодические ухудшения качества питающей воды. Действие коагулянта приводит к формированию «хлопьев», на которых адсорбируются органические соединения. «Хлопья» задерживаются на поверхности ультрафильтрационнй мембраны и легко удаляются при обычной обратной промывке. Без использования коагулянта уменьшение параметра полной органики (ТОС) системой ультрафильтрации находится на уровне 25%, при использовании коагулянта данное значение возрастает до 60% (поверхностные воды).

Нашей компанией были проведены полупромышленные испытания собственных установок водоподготовки на основе ультрафильтрации воды , одна из них работала на мембранах Hydracap . В настоящей статье сообщается о некоторых результатах работы этой установки.

Результаты испытаний установки ультрафильтрации воды

В ходе полупромышленных испытаний отрабатывалась схема работы установки ультрафильтрации на воде реки Москва. Были уточнены основные показатели работы установки водоподготовки, такие как – удельный съём фильтрата с поверхности мембранного элемента, доза коагулянта, уровень pH исходной воды и воды полученной в результате ультрафильтрации.

Дозы коагулянтов .

Для обеспечения более полного удаления органических веществ из исходной воды проводилось дозирование полиоксихлорида алюминия (Аурат-18) и/или хлорида железа III . Использование этих коагулянтов позволяет добиться снижения уровня органических веществ в воде не менее чем на 60%.

Оптимальная доза составляет 4 мг/л по Al для полиоксихлорида алюминия и 6 мг/л по Fe для хлорида железа III . По результатам химических анализов фильтрата с установки ультрафильтрации, концентрация остаточного алюминия составила менее 0.05 мг/л, железа менее 0.1 мг/л.

Динамика изменения качества воды после коагуляции в осветлителе и ультрафильтрации иллюстрирована на рис 2-3.

Рисунок 2

Как наглядно видно из представленных графиков, технология ультрафильтрации воды с предварительной коагуляцией имеет значительное преимущество перед классической технологией осветления. Качество воды, полученной после ультрафильтрации по взвешенным веществам, практически не зависит от качества исходной воды и стабилизируется на уровне 0.1- 0.2мг/л. Содержание железа в выходной воде не превышало 100 мкг/л и определялось, в основном, количеством дозируемого в поток исходной воды хлорного железа. Эффективность удаления окисляющейся органики (перманганатная окисляемость) составила около 60% она сильно зависит от условий коагуляции (температура, рН, время коагуляции) и типа коагулянта.

Рисунок 3

КПД системы водоподготовки по воде – не менее 92%. Расход электроэнергии системы водоподготовки на выработку 1м 3 воды составляет около 0,19 кВт*ч.

Рекомендации по проектированию промышленной установки водоподготовки.

Промышленная система водоподготовки по результатам проведенных испытаний проектируется на элементах Hydracap 60, фирмы Hydranautics. Система ультрафильтрации воды производительностью 60м 3 /ч должна содержать не менее 17 элементов . Учитывая, что при проектировании системы водоподготовки обычно закладывается блочная конструкция установки, система должна содержать 3 блока по 6 элементов, т.е. 18 элементов. В случае выхода из строя одного из блоков, два других работают независимо, и могут обеспечить в аварийном режиме производительность до 51,6м 3 /ч обработанной воды.

Если требуется обеспечить резервирование системы очистки воды необходимо установить по 7 элементов на 1 блок. В аварийном режиме или во время проведения профилактических работ 2 блока по 7 элементов позволяют обеспечить производительность: 14 элементов Х 4,3м 3 /ч/элемент = 60,2м 3 /ч (удельный поток через поверхность ультрафильтрационной мембраны составит в этом случае 94 л/м 2 /ч). Кроме того, при проектировании установки ультрафильтрационной водоподготовки целесообразно заложить возможность размещения дополнительного резервного (8-го) элемента в каждом блоке. Допустимое время работы установки водоподготовки в аварийном режиме или режиме сервисного обслуживания составляет 24 часа. В случае необходимости более длительной работы установки на двух блоках возможно применение двух дополнительных мембран ультрафильтрации воды на каждом блоке. Время установки дополнительных мембран составляет 5-10 минут, без отключения фильтрации воды.

На каждом блоке необходимо установить насос подачи исходной воды, плюс один резервный насос на три блока.

Советы пчеловоду: поилки.

Всему живому на Земле нужна вода. Нужна она в избытки и пчёлам, для отменного обмена веществ, для регулирования температуры тела и так далее. Жалко, что пчеловоды об этом просто забывают: новички - из-за незнания; кто-то просто ленится; а кто-то просто полагает, что пчёлы, если надо, воду сами отыщут. Хорошо, если поблизости вода действительно имеется, к примеру, река. Но, если вода далеко, то о ней пчеловод должен позаботиться.

Пчёлы, когда ищут воду, ориентируются на температуру, а не на её вкус. Хотя и вкус воды, так же для них немаловажен. Они предпочитают пополнять запасы воды там, где она теплее, к примеру, это может быть бассейн или колодец, поилки домашних животных. А вот воду из-под крана они не любят, и понятно почему, ведь она и для человека пользу не приносит. Да и холодная она для пчёл, а если они пьют воду холодную, то температура их тела снижается, а вода составляет половину массы тела. Если пчёлы привыкли летать за водой на какое-то определённое место, то отучить их будет крайне сложно, в особенности, если они летают туда не один месяц и тем более, не один год.

И всё же, с чего начать пчеловоду, решившему отманить пчёл от их привычного места водопоя? Надо уже ранней весной соорудить для пчёл поилку, эта поилка должна быть всегда наполнена свежей водой. Тогда пчёлы будут беречь и силы, и энергию, которые ранее были затрачены на поиск воды. Требования к поилке просты:

Лёгкость в дезинфекции;

Быстрота в сборке и разборке,

Удобства для пчёл и пчеловода,

Лёгкость в заполнении водой,

А ещё она должна легко и быстро приводиться в действие.

Санитарные требования:

Поилка должна стоять в сухом месте,

Солнечное место;

Ветреное место;

И там где не главное направление полёта пчёл.

Виды поилок.

Как правило, пчеловоды пользуются двумя типами поилок:

Индивидуальные.

Общие.

А ещё используются, в качестве поилок, различные сосуды и посуда стеклянная, деревянная, металлическая или из пластика. Используется специально выпущенная промышленностью посуда, специально изготовленная пчеловодами посуда, или просто, посуда, приспособленная в виде поилки.

И нет ничего плохого в том, что пчеловод не купил для пчёл поилку, а придумал её сам. Главное, что бы посудина отвечала всем функциональным и санитарным требованиям. Вода в ней должна быть:

Свежей.

Чистой.

Тёплой.

Чаще всего на пасеке можно заметить именно поилки общего типа. Это ёмкость с маленьким краником. Под краном расположена доска под наклоном. На доске есть желобки и разнообразные камешки для красоты. Пчеловоды такие поилки ещё и ракушками дополняют, чтобы пчёл привлечь.

Не стоит приводить примеры самодельных поилок, дополнять примеры чертежами - это ни к чему. Любой желающий сможет быстро сконструировать поилку. Да и в магазине они продаются «по карману».