Оксиды: классификация и химические свойства. Химические свойства гидроксидов: оснований, кислот, амфотерных гидроксидов Типичные реакции гидроксидов

Так как оксиды d-металлов нерастворимы в воде, их гидроксиды получают косвенным путем с помощью обменных реакций между их солями и растворами щелочей:

ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl;

MnCl 2 + 2NaOH = Mn(OH) 2 + 2NaCl (в отсутствии кислорода);

FeSO 4 + 2KOH = Fe(OH) 2 + K 2 SO 4 (в отсутствии кислорода) .

Гидроксиды d-элементов в низших степенях окисления являются слабыми основаниями; они нерастворимы в воде, но хорошо растворяются в кислотах:

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + H 2 O

Гидроксиды d-элементов в промежуточных степенях окисления и гидроксид цинка растворяются не только в кислотах, но и в избытке растворов щелочей с образованием гидроксокомплексов (т.е. проявляют амфотерные свойства), например:

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O;

Zn(OH) 2 + 2NaOH = Na 2 ;

Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O;

Cr(OH) 3 + 3KOH = K 3 .

В более высоких степенях окисления переходные металлы образуют гидроксиды, которые проявляют кислотные свойства или амфотерные свойства с преобладанием кислотных:

С увеличением степени окисления элемента основные свойства оксидов и гидроксидов ослабевают, а кислотные - возрастают.

Поэтому, по периоду слева направо наблюдается усиление кислотных свойств гидроксидов d-металлов в высших степенях окисления до подгруппы Mn, затем кислотные свойства ослабевают:

Sc(OH) 3 - TiO 2 xH 2 O - V 2 O 5 xH 2 O - H 2 CrO 4 - HMnO 4

Усиление кислотных свойств

Fe(OH) 3 - Co(OH) 2 - Cu(OH) 2 - Zn(OH) 2

Медленное ослабление кислотных свойств

Рассмотрим изменение свойств гидроксидов d-металлов в подгруппах. Сверху вниз по подгруппе основные свойства гидроксидов d-элементов в высших степенях окисления возрастают, кислотные свойства уменьшаются. Например, для шестой группы d-металлов:

H 2 CrO 4 - резко - MoO 3 H 2 O - слабо - WO 3 H 2 O

Кислотные свойства уменьшаются

Окислительно-восстановительные свойства соединений d-элементов

Соединения d - элементов в низших степенях окисления проявляют, в основном, восстановительные свойства, особенно в щелочной среде. Поэтому, например, гидроксиды Mn(+2), Cr(+2), Fe(+2) являются очень неустойчивыми и быстро окисляются кислородом воздуха:

2Mn(OH)2 + O2 + 2H2O = 2Mn(OH)4;

4Cr(OH) 2 + O 2 + 2H 2 O = 4Cr(OH) 3

Чтобы гидроксид кобальта (II) или никеля (II) перевести в Co(OH) 3 или Ni(OH) 3 , необходимо использовать более сильный окислитель - например, перекись водорода H 2 O 2 в щелочной среде или бром Br 2:

2Co(OH) 2 + H 2 O 2 = 2Co(OH) 3;

2 Ni(OH) 2 + Br 2 +2NaOH = 2 Ni(OH) 3 + 2NaBr

Производные Ti(III), V(III), V(II), Cr (II) легко окисляются на воздухе, некоторые соли могут окисляться даже водой :

2Ti 2 (SO 4) 3 + O 2 + 2H 2 O = 4TiOSO 4 + 2H 2 SO 4;

2CrCl 2 + 2H 2 O = 2Cr(OH) Cl 2 + H 2

Соединения d-элементов в высших степенях окисления (от +4 до +7) обычно проявляют окислительные свойства. Однако, соединения Ti (IV) и V (V) всегда устойчивы и поэтому обладают относительно слабыми окислительными свойствами:

TiOSO 4 + Zn + H 2 SO 4 = Ti 2 (SO 4) 3 + ZnSO 4 + H 2 O;

Na 3 VO 4 + Zn + H 2 SO 4 = VOSO 4 + ZnSO 4 + H 2 O

Восстановление идет в жестких условиях - атомарным водородом в момент его выделения (Zn + 2H + = 2H· + Zn 2+).

А соединения хрома в высших степенях окисления являются сильными окислителями, особенно в кислой среде:

K2Cr2O7 + 3SO2 + H2SO4 = Cr2(SO4)3 + K2SO4 + H2O;

2CrO 3 + C 2 H 5 OH = Cr 2 O 3 + CH 3 COH + H 2 O

Еще более сильные окислительные свойства проявляют соединения Mn(VI), Mn(VII) и Fe(VI):

2KMnO 4 + 6KI + 4H 2 O = 2MnO 2 + 3I 2 + 8KOH;

4K 2 FeO 4 + 10H 2 SO 4 = 2Fe 2 (SO 4) 3 + 3O 2 +10H 2 O+ 4K 2 SO 4

Таким образом, окислительные свойства соединений d-элементов в высших степенях окисления по периоду слева направо возрастают.

Окислительная способность соединений d-элементов в высших степенях окисления по подгруппе сверху вниз ослабевает . Например, в подгруппе хрома: бихромат калия K 2 Cr 2 O 7 взаимодействует даже с таким слабым восстановителем, как SO 2 . Чтобы восстановить молибдат- или вольфрамат-ионы необходим очень сильный восстановитель, например, солянокислый раствор хлорида олова (II):

K 2 Cr 2 O 7 + SO 2 + H 2 SO 4 = Cr 2 (SO 4) 3 + K 2 SO 4 + H 2 O

3 (NH 4) 2 MoO 4 + НSnCl 3 + 9HCl = MoO 3 MoO 5 + H 2 SnCl 6 +4H 2 O + 6NH 4 Cl

Последняя реакция идет при нагревании, а степень окисления d-элемента уменьшается совсем незначительно.

Соединения d-металлов в промежуточной степени окисления обладают окислительно-восстановительной двойственностью . Например, соединения железа (III) в зависимости от характера вещества-партнера могут проявлять как свойства восстановителя:

2FeCl3 + Br2 + 16KOH = 2K2FeO4 + 6KBr + 6KCl +8H2O,

так и окислительные свойства:

2FeCl 3 + 2KI = 2FeCl 2 + I 2 +2KCl.

2NaOH + CO 2 = Na 2 CO 3 + H 2 O,

основание кислотный соль

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O,

основание кислота соль

2NaOH + PbO = Na 2 PbO 2 + H 2 O,

основание амфотерный соль

2NaOH + Pb(OH) 2 = Na 2 PbO 2 + 2H 2 O,

основание амфотерный соль

гидроксид

2H 3 PO 4 + 3Na 2 O = 2Na 3 PO 4 + 3H 2 O,

кислота основной соль

H 2 SO 4 + SnO = SnSO 4 + H 2 O,

кислота амфотерный соль

H 2 SO 4 + Sn(OH) 2 = SnSO 4 + 2H 2 O.

кислота амфотерный соль

гидроксид

Амфотерные гидроксиды в реакциях с кислотами проявляют основные свойства:

2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 6H 2 O,

со щелочами (основаниями) – кислотные свойства:

H 3 AlO 3 + 3NaOH = Na 3 AlO 3 + 3H 2 O,

или H 3 AlO 3 + NaOH = NaAlO 2 + 2H 2 O.

    Основания и кислоты реагируют с солями, если в результате образуется осадок или слабый электролит. Слабые кислоты – H 3 PO 4 , H 2 CO 3 , H 2 SO 3 , H 2 SiO 3 и другие.

2NaOH + NiSO 4 = Ni(OH) 2  + Na 2 SO 4 ,

основание соль

3H 2 SO 4 + 2Na 3 PO 4 = 2H 3 PO 4 + 3Na 2 SO 4

кислота соль

Бескислородные кислоты вступают в те же реакции, что и ранее рассмотренные кислородсодержащие кислоты.

Пример. Составьте формулы гидроксидов, соответствующих оксидам: а) FeO; б) N 2 O 3; в) Cr 2 O 3 . Назовите соединения.

Решение

а) FeO – основной оксид, следовательно, соответствующий гидроксид – основание, в формуле основания число гидроксогрупп (OH) равно степени окисления атома металла; формула гидроксида железа (II) – Fe(OH) 2 .

б) N 2 O 3 – кислотный оксид, следовательно, соответствующий гидроксид – кислота. Формулу кислоты можно получить, исходя из представления кислоты как гидрата соответствующего оксида:

N 2 O 3 . H 2 O = (H 2 N 2 O 4) = 2HNO 2 – азотистая кислота.

в) Cr 2 O 3 – амфотерный оксид, следовательно, соответствующий гидроксид амфотерен. Амфотерные гидроксиды записывают в форме оснований – Cr(OH) 3 – гидроксид хрома (III).

Соли

Соли – вещества, которые состоят из основных и кислотных остатков. Так, соль CuSO 4 состоит из основного остатка – катиона металла Cu 2+ и кислотного остатка– SO 4 2  .

По традиционной номенклатуре названия солей кислородных кислот составляют следующим образом: к корню латинского названия центрального атома кислотного остатка добавляют окончание –ат (при высших степенях окисления центрального атома) или –ит (для более низкой степени окисления) и далее – остаток от основания в родительном падеже, например: Na 3 PO 4 – фосфат натрия, BaSO 4 – сульфат бария, BaSO 3 – сульфит бария. Названия солей бескислородных кислот образуют, добавляя к корню латинского названия неметалла суффикс –ид и русское название металла (остатка от основания), например CaS – сульфид кальция.

Средние соли не содержат в своем составе способных замещаться на металл ионов водорода и гидроксогрупп, например CuCl 2 , Na 2 CO 3 и другие.

Химические свойства солей

Средние соли вступают в реакции обмена со щелочами, кислотами, солями. Примеры соответствующих реакций см. выше.

Кислые соли содержат в составе кислотного остатка ион водорода, например NaHCO 3 , CaHPO 4 , NaH 2 PO 4 и т.д. В названии кислой соли ион водорода обозначают приставкой гидро-, перед которой указывают число атомов водорода в молекуле соли, если оно больше единицы. Например, названия солей вышеприведенного состава соответственно – гидрокарбонат натрия, гидрофосфат кальция, дигидрофосфат натрия.

Кислые соли получают

    взаимодействием основания и многоосновной кислоты при избытке кислоты:

Ca(OH) 2 + H 3 PO 4 = CaHPO 4 + 2H 2 O;

    взаимодействием средней соли многоосновной кислоты и соответствующей кислоты или более сильной кислоты, взятой в недостатке:

CaCO 3 + H 2 CO 3 = Ca(HCO 3) 2 ,

Na 3 PO 4 + HCl = Na 2 HPO 4 + NaCl.

Основные соли содержат в составе остатка основания гидроксогруппу, например CuOHNO 3 , Fe(OH) 2 Cl. В названии основной соли гидроксогруппу обозначают приставкой гидроксо-, например, названия вышеприведённых солей соответственно: гидроксонитрат меди (II), дигидроксохлорид железа (III).

Основные соли получают

    взаимодействием многокислотного (содержащего в своем составе более одной гидроксогруппы) основания и кислоты при избытке основания:

Cu(OH) 2 + HNO 3 = CuOHNO 3 + H 2 O;

    взаимодействием соли, образованной многокислотным основанием, и основания, взятого в недостатке:

FeCl 3 + NaOH = FeOHCl 2  + NaCl,

FeCl 3 + 2NaOH = Fe(OH) 2 Cl + 2NaCl.

Кислые и основные соли обладают всеми свойствами солей. В реакциях со щелочами кислые соли, а с кислотами – основные соли переходят в средние.

Na 2 HPO 4 + NaOH = Na 3 PO 4 + H 2 O,

Na 2 HPO 4 + 2HCl = H 3 PO 4 + 2NaCl,

FeOHCl 2 + HCl = FeCl 3 + H 2 O,

FeOHCl 2 + 2NaOH = Fe(OH) 3  + 2NaCl.

Пример 1 . Составьте формулы всех солей, которые могут быть образованы основанием Mg(OH) 2 и кислотой H 2 SO 4 .

Решение

Формулы солей составляем из возможных основных и кислотных остатков, соблюдая правило электронейтральности. Возможные основные остатки – Mg 2+ и MgOH + , кислотные остатки – SO 4 2- и HSO 4  . Заряды сложных основных и кислотных остатков равны сумме степеней окисления составляющих их атомов. Сочетанием основных и кислотных остатков составляем формулы возможных солей: MgSO 4 – средняя соль – сульфат магния; Mg(HSO 4) 2 – кислая соль – гидросульфат магния; (MgOH) 2 SO 4 – основная соль – гидроксосульфат магния.

Пример 2. Напишите реакции образования солей при взаимодействии оксидов

а) PbO и N 2 O 5 ; б) PbO и Na 2 O.

Решение

В реакциях между оксидами образуются соли, основные остатки которых формируются из основных оксидов, кислотные остатки – из кислотных оксидов.

а) В реакции с кислотным оксидом N 2 O 5 амфотерный оксид PbO проявляет свойства основного оксида, следовательно, основной остаток образующейся соли – Pb 2+ (заряд катиона свинца равен степени окисления свинца в оксиде), кислотный остаток – NO 3  (кислотный остаток соответствующей данному кислотному оксиду азотной кислоты). Уравнение реакции

PbO + N 2 O 5 = Pb(NO 3) 2 .

б) В реакции с основным оксидом Na 2 O амфотерный оксид PbO проявляет свойства кислотного оксида, кислотный остаток образующейся соли (PbO 2 2 ) находим из кислотной формы соответствующего амфотерного гидроксида Pb(OH) 2 = H 2 PbO 2 . Уравнение реакции

Калия, натрия или лития, могут взаимодействовать с водой. В этом случае в продуктах реакции обнаруживаются соединения, относящиеся к гидроксидам. Свойства этих веществ, особенности протекания химических процессов, в которых участвуют основания, обусловлены присутствием в их молекулах гидроксильной группы. Так, в реакциях электролитической диссоциации основания расщепляются на ионы металла и анионы OH - . Как основания взаимодействуют с оксидами неметаллов, кислотами и солями, мы и рассмотрим в нашей статье.

Номенклатура и строение молекулы

Чтобы правильно назвать основание, требуется к названию металлического элемента прибавить слово гидроксид. Приведем конкретные примеры. Основание алюминия относится к амфотерным гидроксидам, свойства которых мы рассмотрим в статье. Обязательное присутствие в молекулах оснований гидроксильной группы, связанной с катионом металла ионным типом связи, можно определить с помощью индикаторов, например, фенолфталеина. В водной среде избыток ионов OH - определяется по изменению цвета раствора индикатора: бесцветный фенолфталеин становится малиновым. Если металл проявляет несколько валентностей, он может образовывать несколько оснований. Например, железо имеет два основания, в которых равна 2 или 3. Первое соединение характеризуется признаками второе - амфотерных. Поэтому свойства высших гидроксидов отличаются от соединений, в которых металл имеет низшую степень валентности.

Физическая характеристика

Основания - это твердые вещества, устойчивые к нагреванию. По отношению к воде они делятся на растворимые (щелочи) и нерастворимые. Первая группа образована активными в химическом отношении металлами - элементами первой и второй групп. Нерастворимые в воде вещества состоят из атомов других металлов, чья активность уступает натрию, калию или кальцию. Примерами таких соединений могут служить основания железа или меди. Свойства гидроксидов будут зависеть от того, к какой группе веществ они относятся. Так, щелочи являются термически прочными и не разлагаются при нагревании, тогда, как нерастворимые в воде основания под действием высокой температуры разрушаются, образуя оксид и воду. Например, основание меди разлагается следующим образом:

Cu(OH) 2 = CuO + H 2 O

Химические свойства гидроксидов

Взаимодействие между собой двух важнейших групп соединений - кислот и оснований - именуют в химии реакцией нейтрализации. Такое название можно объяснить тем, что химически агрессивные гидроксиды и кислоты образуют нейтральные продукты - соли и воду. Являясь, по сути, обменным процессом между двумя сложными веществами, нейтрализация характерна как для щелочей, так и для нерастворимых в воде оснований. Приведем уравнение реакции нейтрализации между едким калием и хлоридной кислотой:

KOH + HCl = KCl + H 2 O

Важное свойство оснований щелочных металлов является их способность реагировать с кислотными оксидами, в результате можно получить соль и воду. Например, пропуская через гидроксид натрия углекислый газ, можно получить его карбонат и воду:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

К реакциям ионного обмена относится взаимодействие между щелочами и солями, идущее с образованием нерастворимых гидроксидов или солей. Так, приливая по каплям раствор в раствор сернокислой меди, можно получить голубой желеобразный осадок. Это основание меди, нерастворимое в воде:

CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Химические свойства гидроксидов, нерастворимых в воде, отличаются от щелочей тем, что они при небольшом нагревании теряют воду - дегидратируются, переходя в форму соответствующего основного окисла.

Основания, проявляющие двойственные свойства

Если элемент или может реагировать и с кислотами, и с щелочами - его называют амфотерным. К таковым относятся, например, цинк, алюминий и их основания. Свойства амфотерных гидроксидов позволяют записывать их молекулярные формулы как в выделяя при этом гидроксогруппу, так и в виде кислот. Представим несколько уравнений реакций основания алюминия с хлоридной кислотой и гидроксидом натрия. Они иллюстрируют особые свойства гидроксидов, относящихся к амфотерным соединениям. Вторая реакция проходит с распадом щелочи:

2Al(OH) 3 + 6HCl = 2AlCl 3 + 3H 2 O

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O

Продуктами процессов будут вода и соли: хлорид алюминия и алюминат натрия. Все амфотерные основания не растворяются в воде. Добывают их в результате взаимодействия соответствующих солей и щелочей.

Способы получения и применение

В промышленности, требующей больших объемов щелочей, их получают электролизом солей, содержащих катионы активных металлов первой и второй группы периодической системы. Сырьем для добычи, например, едкого натрия, служит раствор поваренной соли. Уравнение реакции будет таким:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2

Основания малоактивных металлов в лаборатории получают взаимодействием щелочей с их солями. Реакция относится к типу ионного обмена и заканчивается выпадением осадка основания. Простой способ получения щелочей - это реакция замещения, проходящая между активным металлом и водой. Она сопровождается разогреванием реагирующей смеси и относится к экзотермическому типу.

Свойства гидроксидов используют в промышленности. Особую роль здесь играют щелочи. Их применяют в качестве очистителей керосина и бензина, для получения мыла, обработки натуральной кожи, а также в технологиях производства искусственного шелка и бумаги.

ОПРЕДЕЛЕНИЕ

Гидроксидами называются сложные вещества, в состав которых входят атомы металлов, соединенные с одной или несколькими гидроксогруппами.

Большинство оснований - твердые вещества с различной растворимостью в воде. Гидроксид меди (II) голубого цвета (рис. 1), гидроксид железа (III) бурого, большинство других белого цвета.

Рис. 1. Гидроксид меди (II). Внешний вид.

Получение гидроксидов

Растворимые основания (щелочи) в лаборатории можно получить при взаимодействии активных металлов и их оксидов с водой:

CaO + H 2 O = Ca(OH) 2 .

Щелочи гидроксид натрия и гидроксид кальция получают электролизом водных растворов хлорида натрия и хлорида калия.

Нерастворимые в воде основания получают по реакции солей с щелочами в водных растворах:

FeCl 3 + 3NaOH aq = Fe(OH) 3 ↓ + 3NaCl.

Химические свойства гидроксидов

Растворимые и нерастворимые основания имеют общее свойства: они реагируют с кислотами с образованием солей и воды (реакция нейтрализации):

NaOH + HCl = NaCl + H 2 O;

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O.

Растворы щелочей изменяют цвет некоторых веществ - лакмуса, фенолфталеина и метилового оранжевого, называемых индикаторами (табл. 1).

Таблица 1. Изменение цвета индикаторов под воздействием растворов кислот и оснований.

Кроме общего свойства, щелочи и нерастворимые в воде основания обладают также специфическими. Например, при нагревании голубого осадка гидроксида меди (II) образуется вещество черного цвета - это оксид меди (II):

Cu(OH) 2 = CuO + H 2 O.

Щелочи, в отличие от нерастворимых оснований, при нагревании обычно не разлагаются. Их растворы действуют на индикаторы, разъедают органические вещества, реагируют с растворами солей (если в их состав входит металл, способный образовать нерастворимое основание) и кислотными оксидами:

Fe 2 (SO 4) 3 + 6KOH = 2Fe(OH) 3 ↓ + 3K 2 SO 4 ;

2KOH + CO 2 = K 2 CO 3 + H 2 O.

Применение гидроксидов

Гидроксиды находят широкое применение в промышленности и быту. Например, большое значение имеет гидроксид кальция. Это белый рыхлый порошок. При смешивании его с водой образуется так называемое известковое молоко. Так как гидроксид кальция немного растворяется в воде, то после отфильтровывания известкового молока получается прозрачный раствор - известковая вода, которая мутнеет при пропускании через неё диокисда углерода. Гашеную известь применяют дляприготовления бордосской смеси -средства борьбы с болезнями и вредителями растений. Известковое молоко широко используют в химической промышленности, например при производстве сахара, соды и других веществ.

Гидроксид натрия применяют для очистки нефти, производства мыла, в текстильной промышленности. Гидроксид калия и гидроксид лития используют в аккумуляторах.

Примеры решения задач

ПРИМЕР 1

Задание В одном из гидроксидов олова массовая доля элементов равна: олова - 63,6%; кислорода - 34,2%; водорода - 2,2%. Определите формулу этого гидроксида.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (олово), «у» (кислород) и «z» (водород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(Sn)/Ar(Sn) : ω(O)/Ar(O) : ω(H)/Ar(H);

x:y:z = 63,6/119: 34,2/16: 2,1/1;

x:y:z = 0,53: 2,14: 2,1 = 1: 4: 4.

Значит формула гидроксида олова имеет вид Sn(OH) 4 .

Ответ Формула гидроксида олова имеет вид Sn(OH) 4

ПРИМЕР 2

Задание Определите массовую долю гидроксида бария в растворе, полученном при смешивании воды массой 50 г и оксида бария массой 1,2 г.
Решение Массовая доля вещества Х в растворе рассчитывается по следующей формуле:

ω (Х) = m(X) / m solution × 100%.

Масса раствора складывается из масс растворенного вещества и растворителя:

m solution = m(H 2 O) + m(BaO) = 50 + 1,2 = 51,2 г.

Запишем уравнение реакции получения гидроксида бария:

BaO + H 2 O = Ba(OH) 2 .

Рассчитаем количества моль исходных веществ:

n(H 2 O) = m(H 2 O) / M(H 2 O);

M(H 2 O) = 18 г/моль;

n(H 2 O) = 50 / 18 = 2,8 моль.

n(BaO) = m(BaO) / M(BaO);

M(BaO) = 153 г/моль;

n(BaO) = 1,2 / 153 = 0,008 моль.

Расчет ведем по соединению, находящемуся в недостатке (оксид бария). Согласно уравнению

n(BaO) :n(Ba(OH) 2) = 1:1, т.е. n(Ba(OH) 2) = n(BaO) = 1,04 моль.

Тогда масса образовавшегося гидроксида бария будет равна:

m(Ba(OH) 2) = n(Ba(OH) 2) × M(Ba(OH) 2);

M(Ba(OH) 2) = 171 г/моль;

m(Ba(OH) 2) = 0,008 ×171 = 1,368 г.

Найдем массовую долю гидроксида бария в растворе:

ω (Ba(OH) 2) = 1,368 / 51,2 × 100% = 2,67%.

Ответ Массовая доля гидроксида бария равна 2,67%

Оксиды - это сложные вещества, состоящие из какого-нибудь элемента и кислорода со степенью окисления -2.

Например: K2O, CaO, Fe2O3, СО2, Р2О5, SO3, Cl2O7, OsO4. Оксиды образуют все химические элементы, кроме Не, Ne, Ar. Химическая связь между кислородом и другим элементом бывает ионной и ковалентной. По химическим свойствам оксиды делятся на солеобразующие и несолеобразующие. К последним относятся, например, N2O, NO, NO 2 , SiO, SO.

Солеобразующие оксиды делятся на основные, кислотные и амфотерные.

О с н о в н ы е о к с и д ы. Оксиды, гидраты которых являются основаниями, называют основными оксидами. Например, Na2O, CuO являются основными оксидами, так каким соответствуют основания NaOH, Cu(OH)2. Как правило, основными оксидами могут быть оксиды металлов со степенью окисления +1, +2. Химическая связь здесь ионная.

Оксиды щелочных (Li, Na, К, Rb, Cs, Fr) и щелочно-земельных металлов (Са, Sr, Ba, Ra), взаимодействуя с водой, дают основания. Например:

К2О + Н2О = 2КОН

ВаО + H2O = Ва(ОН)2

Остальные основные оксиды с водой практически не взаимодействуют. Основные оксиды взаимодействуют с кислотами и дают соль и воду:

Fе 2 О 3 + 3Н 2 SО 4 = Fе 2 (SО 4) 3 + 3Н 2 О

Fе 2 О 3 + 6H + = 2Fе 3 + + 3Н 2 О

Основные оксиды реагируют с кислотными оксидами и дают соли:

FeO + SiO 2 = FeSiО 3 (t)

К и с л о т н ы е о к с и д ы. Оксиды, гидраты которых являются кислотами, называют кислотными. К кислотным относятся оксиды неметаллов и металлов со степенью окисления +4,+5, +6, +7. Например, N 2 O 3 , P 2 O 5 , СrО 3 , Mn 2 O 7 , CO 2 , V 2 O 5 , SO 3 , Сl 2 O 7 - кислотные оксиды, так каким соответствуют кислоты HNO 2 , Н 3 РО 4 , H 2 CrО 4 , НМnО 4 и т. д. (химическая связь здесь ковалентная и ионная). Большинство кислотных оксидов взаимодействует с водой и образует кислоты. Например:

SO 3 + H2O = H2SO4

Мn2O7+ H2O = 2HMnO4

SiO2 + H2O

Кислотные оксиды реагируют с основаниями (щелочами) и дают соль и воду:

N 2 O 5 + Ca(OH) 2 = Са(NО 3) 2 + H 2 O

N 2 O 5 + 2OH‾ = 2NО 3 ‾ + H 2 O

А м ф о т е р н ы е о к с и д ы. Оксиды металлов со степенью окисления +3, +4 и иногда +2,которые в зависимости от среды проявляют основные или кислотные свойства, т. е. реагируют с кислотами и основаниями, называют амфотерными. Им соответствуют гидраты, кислоты и основания. Например:

Zn(OH)2 ← ZnO → H2ZnO2

H2O Аl(ОН) 3 ← Аl 2 О 3 → Н 3 АlО 3 → HalO 2

Амфотерные оксиды реагируют с кислотами и основаниями:

Аl2Оз + 3Н2SO4 = Аl2 (SO4)з + 3H2O

Аl2Оз + 6H + = 2Al 3+ + 3H2O

Аl2Оз + 2NaOH + 3H2O = 2Na

Аl2Оз + 2OН‾ + 3H2O = 2[Аl(ОН)4]‾

При сплавлении А12Оз со щелочами образуются метаалюминаты:

сплавление Аl2Оз + 2NaOH → 2NaAlO2 + H2O

метаалюминат натрия

Аl2Оз + 2OН‾ = 2Аl O2‾ + H2O

Амфотерные оксиды с водой непосредственно не соединяются.

Гидроксиды

Химические соединения с общей формулой R (OH ) n называют гидроксидами, где R - атом или группа атомов с положительным зарядом.

В зависимости от типа электролитической диссоциации гидроксиды делятся на три группы: основания, кислоты и амфотерные гидроксиды. Например:

Ba(OH)2 ↔ Ва 2 + + 2ОН‾ основание

H2SO4 ↔ 2H + + SO2 2 ‾ кислота

Рb 2 + + 2ОН‾ ↔ Pb(ОН)2 ↔2H + + РbО2 2 ‾ амфотерный гидроксид