Архитектура компьютера определяется в основном. Архитектура, состав и назначение основных элементов персонального компьютера. Внешние устройства компьютера

Архитектура ПК

Основная компоновка частей компьютера и связь между ними называется архитектурой Персонального Компьютера (ПК). При описании архитектуры ПК определяется состав компонентов, входящих в неё, их функции и характеристики.

Центром работы компьютера является системный блок, который в свою очередь подразделяется на:

· Центральный процессор;

· Оперативное запоминающее устройство:

· Системная плата;

· Видеокарта;

· Корпус;

· Блок питания;

· Жёсткий диск;

· Оптический привод.

Об этих устройствах сейчас и пойдет речь.

Центральный процессор

Центральный процессор (ЦП, ЦПУ, CPU) - электронный блок или микросхема, главная часть аппаратного обеспечения. Он управляет работой всех узлов компьютера и программой, описывающей алгоритмы. ЦП переводит всю обрабатываемую информацию в цифровую, т.е. более понятную для него. Физически, - это маленькая электронная схема на материнской плате, выполняющая все вычисления и обработку информации. Процессор работает с высокой скоростью и может выполнить десятки или даже сотни миллионов операций в секунду. Его можно представить в виде следующих основных узлов:

· устройство управления, предназначенное для дешифрования и исполнения команд;

· рабочие регистры, необходимые для адресации памяти и выполнения вычислительных операций;

· арифметико-логическое устройство, выполняет логические и арифметические операции;

· управление вводом - выводом, ввод-вывод данных в процессор или из процессора;

Процессор работает с командами, которым предписывается действие, выполняемое процессором. Любая программа, выполняемая процессором, состоит из множества различных команд.

Рассмотрим вкратце формат команды. Информация в компьютере хранится в виде двоичного кода, составленного из последовательностей 0 и 1. Эти последовательности имеют разрядность кратную 8, т.е. 8 - разрядные, 16 - разрядные, 32 - разрядные и т.д. 0 или 1 в такой последовательности носит название бит . Соответственно:

8 бит = 1 байту;

16 бит = 1 машинному слову;

32 бита = двойному машинному слову.

В компьютере объём информации определяется в следующих величинах:

1024 байт = 1 килобайту (Кб);

1024 Кб = 1 мегабайту (Мб);

1024 Мб = 1 гигабайту (ГБ);

1024 Гб = 1 терабайту (Тб).

Процессор работает с оперативной памятью, так как в ней хранятся данные, необходимые процессору для работы. Также в оперативную память процессор помещает результаты своих вычислений перед окончательным сохранением в

долговременной памяти компьютера.

Системная плата

Системная плата (Материнская плата, Motherboard) - плата, соединяющая на себе устройства компьютера. Важной функцией материнской памяти является то, что она несёт на себе микросхему BIOS, в которую записана информация о конфигурации компьютера и информация о начальной загрузке компьютера.

На материнской плате располагается множество различных устройств, таких как:

· Центральный процессор;

· Микросхема BIOS;

· Чипсет (южный и северный мосты);

· Слот AGP;

· Слоты PCI;

· Разъёмы IDE;

· Разъёмы SATA:

· Контроллеры SATA;

· Разъёмы для подключения USB-устройств или дополнительных USB-портов;

· Разъём для подключения кнопок лицевой панели системного блока;

· Звуковая плата;

· Порты PS 2 для клавиатуры и мыши.

А теперь подробнее об этих устройствах.

BIOS - Basic Input/Output System

BIOS (Basic Input/Output System) - базовая система ввода-вывода - часть системного ПО, предназначенная для обеспечения операционной системе доступа к аппаратуре компьютера и подключенным к нему устройствам. В BIOS зашита конфигурация компьютера и программа его начальной загрузки. При включении питания компьютера BIOS инициализирует устройства, которые подключены к материнской плате, проверяет их работоспособность. Если всё нормально, то BIOS ищет загрузчик на носителях информации, таких как, например, жёсткий диск. После загрузчик предаёт управление операционной системе. В новых материнских платах может быть 2 микросхемы, что повышает устойчивость BIOS.

Чипсет - набор микросхем, выполняющих набор каких-либо функций. В компьютерах чипсет размещается на материнской плате и выполняет роль компонента, обеспечивающего совместное функционирование подсистем памяти, ЦП, ввода-вывода и других. Чипсет современных материнских плат компьютеров состоит из двух основных микросхем. Это Северный и Южный мосты.

Северный мост (контроллер-концентратор памяти) - обеспечивает взаимодействие процессора с памятью. С ЦП соединяется высокоскоростной шиной. Также он осуществляет передачу команд процессора к оперативной памяти, преобразование этих команд в формат, необходимый для обращения к конкретной группе ячеек оперативной памяти. Именно контроллер оперативной памяти является ответственным элементом за все операции, которые производит процессор с оперативной памятью. Контроллер динамической оперативной памяти состоит из таких элементов:

· устройство управления;

· устройство записи;

· устройство считывания;

· дешифратор строк;

· дешифратор столбцов;

Интерфейс системной шины - отвечает за взаимодействие процессора с остальными устройствами, подключенными к северному мосту, а именно: с оперативной памятью, видеокартой и южным мостом.

В состав северного моста может входить либо графический процессор, либо контроллер шины AGP , либо и то и другое вместе. Графический процессор выполняет функции видеокарты, но его возможности по сравнению видеокартой значительно ниже. Контроллер шины AGP предназначен для взаимодействия видеокарты с процессором и оперативной памятью. Процессор выдаёт команды на выведение графической информации, контроллер системной шины передаёт эти команды в контроллер шины AGP и затем по шине AGP данные поступают на видеокарту, при помощи своего графического процессора выполняет вывод графической информации на монитор.

В настоящее время шина AGP и видеокарты для разъёмов AGP уже устарели. На смену им пришёл новый интерфейс PCI-E, который получил развитие на базе шины PCI.

Роль северного моста в компьютерной системе весьма значительна. Ведь именно он определяет, какой процессор, какая динамическая оперативная память и какая графическая система будут установлены в компьютере. Северный мост входит в ряд сложных электронных устройств, в составе которого может находиться несколько сот миллионов элементарных транзисторов. Значит, тепловыделение может быть весьма значительным, что влияет на стабильность работы северного моста. Именно поэтому он практически всегда имеет встроенный радиатор для охлаждения, зачастую с кулером.

Южный мост (контроллер-концентратор ввода-вывода) - это микросхема, связывающая "медленные" взаимодействия на материнской плате с ЦП через северный мост, который, в отличие от южного, подключён напрямую к процессору. Он отвечает за управление устройств ввода-вывода с более быстродействующими устройствами, установленными на северный мост: процессором, оперативной памятью и видеокартой. Поэтому функцией южного моста является передача необходимых данных и сигналов управления устройству, подключенному к нему от процессора, оперативной памяти или видеокарты.

В зависимости от исполнения, в состав южного моста могут входить звуковой, сетевой, USB контроллеры. Современные южные мосты поддерживают шину PCI-Express.

PCI-E (PCI-Express) - это компьютерная шина, которая использует программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных. Шина PCI-E практически вытеснила интерфейс и шину AGP. На современных платах число разъёмов PCI-E может доходить до трёх. А из этого следует, что можно использовать две или три видеокарты.

Одним из важнейших устройств не только самого южного моста, но и компьютера в целом, является контроллер прерываний . Его основной функцией является передача процессору сигнала от периферийного устройства, с тем, чтобы процессор обработал информацию от этого устройства.

Также не менее важным является контроллер прямого доступа к памяти или контроллер DMA . Его использование позволяет достичь в некоторых случаях заметного быстродействия. Все взаимодействия в компьютере происходят через центральный процессор. Если между двумя устройствами должен произойти обмен данными, то центральный процессор сначала считывает данные от первого устройства, а затем передаёт эти данные другому устройству.

Суть режима DMA состоит в том, что устройства, между которыми происходит обмен информацией, информируют процессор о выбранном режиме, и о занятии шины, по которой будет происходить обмен.

архитектура персональный компьютер видеокарта

Контроллер шины SMbus отвечает за шину, задачами которой являются вспомогательные функции, такие как, например, контроль за температурой корпуса центрального процессора.

Управление питанием служит для снижения энергопотребления компьютерной системы в целом. Это позволяет экономить ресурсы. Если включен один компьютер, то это не так заметно. А если целая сеть, то экономия

электричества будет ощутима. Современные компьютеры включают режим

сниженного энергопотребления, когда на них никто не работает, но

остаются включенными.

USB (Universal Serial Bus)

USB (универсальная последовательная шина) - последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода в дифференциальном включении используются для приёма и передачи данных, а два провода - для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания, но максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА. К одному контроллеру шины USB можно подсоединить до 127 устройств по топологии "звезда".

PS/2 - разъем, применяемый для подключения клавиатуры и мыши. Но в настоящее время все больше компьютерных мышей и клавиатур имеют разъем USB, а некоторые современные материнские не имеют разъема PS/2 или имеют только один разъем.

Звуковая плата

Звуковая плата (звуковая карта, аудиокарта) - дополнительный элемент компьютера, не относящийся к его основному предназначению, позволяющий обрабатывать звук. На момент появления представляла собой отдельную плату, устанавливаемую в слот расширения. В современных ПК присутствует в виде микросхемы, интегрированной в чипсет материнской платы. Также выпускается в виде внешнего устройства.

структура вычислительных систем.

Персональный компьютер является устройством автоматизации информационных процессов и используется для накопления, обработки и передачи информации.

Рассмотрим устройство наиболее распространенного типа компьютера - настольного персонального (мы рассматриваем компьютеры фирмы IBM (International Bussines Machines Corporation) и IBM-совместимые компьютеры, которые в мировом масштабе использует большинство людей в своей практической деятельности; именно для этих компьютеров используется операционная система Windows фирмы Microsoft).

Технические средства или аппаратура компьютера в английском языке обозначаются словом «Hardware», которое буквально переводится как «твердые изделия» или «железо».

2.1. Архитектура персонального компьютера

Описание компьютера на некотором общем уровне называется его архитектурой. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативной памяти, внешних запоминающих и периферийных устройств. Различают однопроцессорную и многопроцессорную архитектуры компьютера.

В 1941 г. Джон фон Нейман изложил принципы работы и обосновал принципиальную схему компьютера с классической однопроцессорной архитектурой, в соответствии с которой компьютер должен иметь следующие устройства:

    арифметическо-логической устройство (АЛУ), выполняющее арифметические и логические операции;

    устройство управления (УУ), организующее процесс выполнения программы;

    запоминающее устройство (оперативная память (ОП)) для хранения программ и данных;

    внешнее устройство (ВУ) для ввода и вывода информации.

Принципиальная схема компьютера с классической архитектурой приведена на рис.2.1.

Рис. 2.1 Принципиальная схема компьютера с классической архитектурой:

управляющие связи

информационные связи

К однопроцессорной архитектуре относится и архитектура персонального компьютера с общей шиной (рис.2.2). Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью, или системной шиной.

Основа компьютера - процессор, в нем расположены АЛУ и УУ. АЛУ осуществляет непосредственную обработку данных, а УУ координирует взаимодействие различных частей компьютера. В запоминающем устройстве (памяти ) в закодированном виде хранится информация (та, которая вводится в компьютер, и та, которая возникает в процессе работы). Компьютер имеет внешнее запоминающее устройство (внешнюю память).

В процессе работы процессор и память взаимодействуют между собой, но процессор, кроме того, организует работу остальных устройств компьютера: клавиатуры, дисплея, дисководов и т.д. Эти устройства осуществляют связь компьютера с внешним миром, поэтому называются внешними.

Процессор, выполняя определенную программу, координирует работу внешних устройств, посылая им и принимая от них информацию. Информация при этом передается в виде электрических импульсов двух видов - низкого и высокого напряжения. Тем самым информация в компьютере кодируется двумя символами: 0 и 1.

Процессор связан с внешними устройствами через магистраль (системную шину ). По сути, это пучок проводов. К шине параллельно подсоединены все внешние устройства, как к телефонному кабелю. Обращение процессора к внешнему устройству похоже на вызов абонента по телефону. Все устройствапронумерованы. Когда нужно обратиться к внешнему устройству, в шину посылается его номер.

Каждое внешнее устройство снабжено специальным приемником сигналов - контроллером. Контроллер играет роль телефонного аппарата - он принимает сигнал от процессора и дешифрует его.

Процессор подает команду, но ему безразлично, как она будет выполняться, поскольку за это отвечает контроллер соответствующего внешнего устройства. Поэтому при наличии соответствующих контроллеров одни внешние устройства можно заменять на другие.

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип построения.

Персональный компьютер напоминает обыкновенный конструктор. Схемы, управляющие всеми устройствами (монитором, дисками, принтером, модемом и т.д.), реализованы на отдельных платах, которые вставляются в слоты - стандартные разъемы системной платы. Весь компьютер питается от единого блока питания. Этот принцип, названный принципом открытой архитектуры, наряду с другими достоинствами обеспечил большой спрос на персональные компьютеры.

Рис. 3. Расположение основных устройств, входящих в состав ПК.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»
КАФЕДРА ИНФОРМАТИКИ И МЕТОДИКИ ПРЕПОДАВАНИЯ ИНФОРМАТИКИ

РЕФЕРАТ
по организации самостоятельной работы на тему:
Архитектура персонального компьютера

Воронеж 2011
СОДЕРЖАНИЕ
Введение………………………………………………………… ………3

    Внешняя архитектура ПК………………………………………..4
    Внутренняя архитектура…………………………………………8
Заключение…………………………………………………… …..……18
Список литературы…………………………………………………… .19

ВВЕДЕНИЕ
Архитектура компьютера - логическая организация и структура аппаратных и программных ресурсов вычислительной системы. Архитектура заключает в себе требования к функциональности и принципы организации основных узлов ЭВМ.
В настоящее время наибольшее распространение в ЭВМ получили 2 типа архитектуры: принстонская и гарвардская. Обе они выделяют 2 основных узла ЭВМ: центральный процессор и память компьютера. Различие заключается в структуре памяти: в принстонской архитектуре программы и данные хранятся в одном массиве памяти и передаются в процессор по одному каналу, тогда как гарвардская архитектура предусматривает отдельные хранилища и потоки передачи для команд и данных.
В более подробное описание, определяющее конкретную архитектуру, также входят: структурная схема ЭВМ, средства и способы доступа к элементам этой структурной схемы, организация и разрядность интерфейсов ЭВМ, набор и доступность регистров, организация памяти и способы её адресации, набор и формат машинных команд процессора, способы представления и форматы данных, правила обработки прерываний.
По перечисленным признакам и их сочетаниям среди архитектур выделяют:
По разрядности интерфейсов и машинных слов: 8-, 16-, 32-, 64-, 86-разрядные (ряд ЭВМ имеет и иные разрядности);
По особенностям набора регистров, формата команд и данных: CISC, RISC, VLIW;
По количеству центральных процессоров: однопроцессорные, многопроцессорные, суперскалярные.

1. ВНЕШНЯЯ АРХИТЕКТУРА ПК

Системный блок - функциональный элемент, защищающий внутренние компоненты ПК от внешнего воздействия и механических повреждений, поддерживающий необходимый температурный режим внутри системного блока, экранирующий создаваемые внутренними компонентами электромагнитное излучение и является основой для дальнейшего расширения системы. Системные блоки чаще всего изготавливаются из деталей на основе стали, алюминия и пластика, также иногда используются такие материалы, как древесина или органическое стекло.
В системном блоке расположены:
Материнская плата с установленным на ней процессором, ОЗУ, картами расширения (видеоадаптер, звуковая карта).
Отсеки для накопителей-жёстких дисков, дисководов CD-ROM и др.
Монитор, дисплей - универсальное устройство визуального отображения всех видов информации. Различают алфавитно-цифровые и графические мониторы, а также монохромные мониторы и мониторы цветного изображения - активно-матричные и пассивно-матричные ЖКМ.
По строению:
ЭЛТ - на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)
ЖК - жидкокристаллические мониторы (англ. liquid crystal display, LCD)
Плазменный - на основе плазменной панели
Проекционный - видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант - через зеркало или систему зеркал)
OLED-монитор - на технологии OLED (англ. organic light-emitting diode - органический светоизлучающий диод).
Клавиатура компьютера - одно из основных устройств ввода информации от пользователя в компьютер. Стандартная компьютерная клавиатура, также называемая клавиатурой PC/AT или AT-клавиатурой (поскольку она начала поставляться вместе с компьютерами серии IBM PC/AT), имеет 101 или 102 клавиши. Клавиатуры, которые поставлялись вместе с предыдущими сериями - IBM PC и IBM PC/XT, - имели 86 клавиш. Расположение клавиш на AT-клавиатуре подчиняется единой общепринятой схеме, спроектированной в расчёте на английский алфавит.
По своему назначению клавиши на клавиатуре делятся на шесть групп:
функциональные;
алфавитно-цифровые;
управления курсором;
цифровая панель;
специализированные;
модификаторы.
Двенадцать функциональных клавиш расположены в самом верхнем ряду клавиатуры. Ниже располагается блок алфавитно-цифровых клавиш. Правее этого блока находятся клавиши управления курсором, а с самого правого края клавиатуры - цифровая панель.
Манипулятор «мышь» - одно из указательных устройств ввода, обеспечивающих интерфейс пользователя с компьютером.
Принтер (англ. printer - печатник) - устройство печати цифровой информации на твёрдый носитель, обычно на бумагу. Относится к терминальным устройствам компьютера.
Процесс печати называется вывод на печать, а получившийся документ - распечатка или твёрдая копия.
Принтеры бывают струйные, лазерные, матричные и сублимационные, а по цвету печати - чёрно-белые (монохромные) и цветные. Иногда из лазерных принтеров выделяют в отдельный вид светодиодные принтеры.
Монохромные принтеры имеют несколько градаций, обычно 2-5, например: чёрный - белый, одноцветный (или красный, или синий, или зелёный) - белый, многоцветный (чёрный, красный, синий, зелёный) - белый.
Монохромные принтеры имеют свою собственную нишу и вряд ли (в обозримом будущем) будут полностью вытеснены цветными.
Сканер (англ. scanner)- устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием. В большинстве сканеров для преобразования изображения в цифровую форму применяются светочувствительные элементы на основе приборов с зарядовой связью.
По способу перемещения считывающей головки и изображения относительно друг друга сканеры подразделяются на ручные (англ. Handheld), рулонные (англ. Sheet-Feed), планшетные (англ. Flatbed) и проекционные.
Акустическая система - устройство для воспроизведения звука.
Акустическая система бывает однополосной (один широкополосный излучатель, например, динамическая головка) и многополосной (две и более головок, каждая из которых создаёт звуковое давление в своей частотной полосе). Акустическая система состоит из акустического оформления (например, «закрытый ящик» или «система с фазоинвертором» и др.) и вмонтированных в него излучающих головок (обычно динамических).
Однополосные системы не получили широкого распространения ввиду трудностей создания излучателя, одинаково хорошо воспроизводящего сигналы разных частот. Высокие интермодуляционные искажения при значительном ходе одного излучателя вызваны эффектом Доплера.
В многополосных акустических системах спектр слышимых человеком звуковых частот разбивается на несколько перекрываемых между собой диапазонов посредством фильтров (комбинации резисторов, конденсаторов и катушек индуктивности, или с помощью цифрового кроссовера). Каждый диапазон подаётся на свою динамическую головку, которая имеет наилучшие характеристики в этом диапазоне. Таким образом достигается наиболее высококачественное воспроизведение слышимых человеком звуковых частот (20-20 000 Гц).

2. ВНУТРЕНЯЯ АРХИТЕКТУРА ПК
Внутренняя архитектура современного персонального компьютера определяется схемой его чипсета, которую можно найти на сайтах производителей - Intel и AMD.
Чипсет (англ. chip set) - набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, ЦПУ, ввода-вывода и других. Чипсеты встречаются и в других устройствах, например, в радиоблоках сотовых телефонов.
Выбор типа чипсета зависит от процессора, с которым он работает, и определяет разновидности внешних устройств (видеокарты, винчестера и др.).
В характеристиках каждого процессора можно найти, с какими чипсетами он может работать.
Например, для процессоров Core 2 Duo рекомендуется использовать чипсет Intel® P965 Express и материнские платы, созданные на его основе.
Материнская плата (англ. motherboard, MB, также используется название англ. mainboard) - это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера (центральный процессор, контроллер ОЗУ и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода). Как правило, материнская плата содержит разъёмы (слоты) для подключения дополнительных контроллеров, для подключения которых обычно используются шины USB, PCI и PCI-Express.
Оперативная память (также оперативное запоминающее устройство, ОЗУ)- в информатике - память, часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.). Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кеш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.
ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера.
Загрузочное ПЗУ - хранит ПО, которое исполняется сразу после включения питания. Как правило, загрузочное ПЗУ содержит BIOS, однако может содержать и ПО, работающие в рамках EFI.
Центральный процессор (ЦП; англ. central processing unit, CPU, дословно - центральное вычислительное устройство) - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами.
Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших интегральных схем (СБИС).
Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.
Видеокарта (известна также как графическая плата, графический ускоритель, графическая карта, видеоадаптер) (англ. videocard) - устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.
Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (PCI-Express, PCI, ISA, VLB, EISA, MCA) или специализированный (AGP), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ).
Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты NVIDIA и AMD (ATi) поддерживают приложения OpenGL на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные способности графического процессора для решения неграфических задач.
Звуковая плата (также называемая звуковая карта или музыкальная плата) (англ. sound card)- это плата, которая позволяет работать со звуком на компьютере. В настоящее время звуковые карты бывают как встроенными в материнскую плату, так и отдельными платами расширения или внешними устройствами. HD Audio - является эволюционным продолжением спецификации AC‘97, предложенным компанией Intel в 2004 году, обеспечивающей воспроизведение большего количества каналов с более высоким качеством звука, чем обеспечивалось при использовании интегрированных аудиокодеков, как AC"97. Аппаратные средства, основанные на HD Audio, поддерживают 192 кГц/24-разрядное качество звучания в двухканальном и 96 кГц/24-разрядное в многоканальном режимах (до 8 каналов).
Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard (Magnetic) Disk Drive, HDD, HMDD)- устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.
В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или керамические) пластины, покрытые слоем ферримагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образуемого у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.
Интерфейс (англ. interface) - совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Серийно выпускаемые жесткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, SCSI, SAS, FireWire, USB, SDIO и Fibre Channel.
Ёмкость (англ. capacity) - количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 2000 Гб (2 Тб). В отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГиБ.
Физический размер (форм-фактор) (англ. dimension). Почти все современные (2001-2010 года) накопители для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма - под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5,25 дюймов.
Время произвольного доступа (англ. random access time) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 - 3,7 мс), самым большим из актуальных - диски для портативных устройств (Seagate Momentus 5400.3 - 12,5).
Скорость вращения шпинделя (англ. spindle speed) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).
Надёжность (англ. reliability) - определяется как среднее время наработки на отказ (MTBF). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.
Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.
Потребление энергии - важный фактор для мобильных устройств.
Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.
Сопротивляемость ударам (англ. G-shock rating) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.
Скорость передачи данных (англ. Transfer Rate) при последовательном доступе:
внутренняя зона диска: от 44,2 до 74,5 Мб/с;
внешняя зона диска: от 60,0 до 111,4 Мб/с.
Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В дисках 2009 года он обычно варьируется от 8 до 64 Мб.
Сетевая плата, сетевая карта, сетевой адаптер, Ethernet-адаптер, NIC (англ. network interface controller- периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети.
Модем (аббревиатура, составленная из слов модулятор-демодулятор)- устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Модулятор осуществляет модуляцию несущего сигнала, то есть изменяет его характеристики в соответствии с изменениями входного информационного сигнала, демодулятор осуществляет обратный процесс. Частным случаем модема является широко применяемое периферийное устройство для компьютера, позволяющее ему связываться с другим компьютером, оборудованным модемом, через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем).
Модем выполняет функцию оконечного оборудования линии связи. При этом формирование данных для передачи и обработку принимаемых данных осуществляет терминальное оборудование, в простейшем случае - персональный компьютер.
Компьютерный блок питания - блок питания, предназначенный для снабжения узлов компьютера электрической энергией. В его задачу входит преобразование сетевого напряжения до заданных значений, их стабилизация и защита от незначительных помех питающего напряжения. Также, будучи снабжён вентилятором, он участвует в охлаждении системного блока.
Основным параметром компьютерного блока питания является максимальная мощность, потребляемая из сети. В настоящее время существуют блоки питания с заявленной производителем мощностью от 50 до 1600 Вт.
Компьютерный блок питания для сегодняшней платформы PC обеспечивает выходные напряжения ±5 ±12 +3,3В Вольт. В большинстве случаев используется импульсный блок питания. Хотя абсолютное большинство чипов использует не более 5 Вольт, введение линии 12 Вольт дает использовать большую мощность (импульсный блок питания без 12 Вольт не может выдавать более 210 Ватт), которая нужна для питания жёстких дисков, оптических приводов, вентиляторов, а в последнее время и материнских плат, процессоров, видеоадаптеров, звуковых карт.
Дисковод - электромеханическое устройство, позволяющее осуществить чтение/запись информации на цифровые носители имеющие форму диска. При этом носитель может быть съёмным или встроенным в устройство. Съёмный носитель часто для защиты помещают в картридж, конверт, корпус и т. д.
Дисководы бывают нескольких типов:
Дисководы для жестких дисков (НЖМД);
Дисководы для дискет;
Дисководы для магнитооптических дисков;
Дисководы для ZIP-дискет;
Дисководы CD-ROM/R/RW;
Дисководы DVD-ROM/R/RW, DVD-RAM.
Система охлаждения компьютера - набор средств для отвода тепла (по сути охлаждения) в компьютере.
Для отвода в основном используется:
Радиатор (алюминиевый или медный)
Связка «радиатор + вентилятор» - кулер
Система жидкостного охлаждения
Фреонная установка
Охлаждающие установки, где в качестве хладагента используются жидкий азот или жидкий гелий.
Компьютерная шина (от англ. computer bus, bidirectional universal switch - двунаправленный универсальный коммутатор) - в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.
Ранние компьютерные шины представляли собой параллельные электрические шины с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую, же логическую функциональность, как параллельные компьютерные шины. Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (multidrop) и цепные (daisy chain) топологии. В случае USB и некоторых других шин могут также использоваться хабы (концентраторы).
ATA (англ. Advanced Technology Attachment - присоединение по передовой технологии) - параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. В 1990-е годы был стандартом на платформе IBM PC; в настоящее время вытесняется своим последователем - SATA и с его появлением получил название PATA (Parallel ATA).
SATA (англ. Serial ATA) - последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA (IDE), который после появления SATA был переименован в PATA (Parallel ATA). SATA использует 7-контактный разъём вместо 40-контактного разъёма у PATA. SATA-кабель имеет меньшую площадь, за счёт чего уменьшается сопротивление воздуху, обдувающему комплектующие компьютера, упрощается разводка проводов внутри системного блока.
SATA-кабель за счёт своей формы более устойчив к многократному подключению. Питающий шнур SATA также разработан с учётом многократных подключений. Разъём питания SATA подаёт 3 напряжения питания: +12 В, +5 В и +3,3 В; однако современные устройства могут работать без напряжения +3,3 В, что даёт возможность использовать пассивный переходник со стандартного разъёма питания IDE на SATA. Ряд SATA-устройств поставляется с двумя разъёмами питания: SATA и Molex.
Стандарт SATA отказался от традиционного для PATA подключения по два устройства на шлейф; каждому устройству полагается отдельный кабель, что снимает проблему невозможности одновременной работы устройств, находящихся на одном кабеле (и возникавших отсюда задержек), уменьшает возможные проблемы при сборке (проблема конфликта Slave/Master устройств для SATA отсутствует), устраняет возможность ошибок при использовании нетерминированных PATA-шлейфов.
Стандарт SATA поддерживает функцию очереди команд (NCQ, начиная с SATA Revision 2.x). Стандарт SATA не предусматривает горячую замену устройств (вплоть до SATA Revision 3.x).

ЗАКЛЮЧЕНИЕ
Архитектура компьютера – это логическая организация и структура аппаратных и программных ресурсов вычислительной системы. Архитектура заключает в себе требования к функциональности и принципы организации основных узлов ЭВМ.
Внешняя архитектура современного персонального компьютера представляет собой соединение монитора, клавиатуры, мыши и акустической системы к системному блоку.
Внутренняя архитектура современного персонального компьютера определяется схемой его чипсета, набором микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. компьютерах Чипсет в компьютере выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, ЦПУ, ввода-вывода и других. Выбор типа чипсета зависит от процессора, с которым он работает, и определяет разновидности внешних устройств (видеокарты, винчестера и др.).
Важным направлением развития вычислительных средств пятого и последующих поколений является интеллектуализация ЭВМ, связанная с наделением ее элементами интеллекта, интеллектуализацией интерфейса с пользователем и др. Работа в данном направлении, затрагивая, в первую очередь, программное обеспечение, потребует и создания ЭВМ определенной архитектуры, используемых в системах управления базами знаний, - компьютеров баз знаний, а так же других подклассов ЭВМ. При этом ЭВМ должна обладать способностью к обучению, производить ассоциативную обработку информации и вести интеллектуальный диалог при решении конкретных задач.

СПИСОК ЛИТЕРАТУРЫ

    Балдин К.В., Уткин В.Б. Информатика: Учебник для студ. вузов. - М.: ПРОЕКТ, 2003.
    Банк рефератов. Copyright © 2005-2009. http://referat2000.bizforum.ru
    Википедия, свободная энциклопндия. http://ru.wikipedia.org/wiki/ Архитектура_персонального_ компьютера.
    Информатика. Базовый курс. Для ВУЗов 2-е издание / Под ред. С. В. Симоновича. СПб.: Питер, 2007. -640с.: ил.
    Леонтьев В.П. Персональный компьютер. Карманный справочник. - М.: ОЛМА-ПРЕСС, 2004.
    Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2005. – М.: ОЛМА-ПРЕСС Образование, 2005. – 800с.: ил.
    Производственное объединение ARAGOR, удобный банк рефератов. http://www.aragor. su/info
    Рудометов Е., Рудометов В. Архитектура ПК, комплектующие, мультимедиа. - СПб, 2000.
    и т.д.................

Архитектура персонального компьютера (ПК) включает в себя структуру, которая отражает состав ПК, и программное обеспечение.

Структура ПК – это набор его функциональных элементов (от основных логических узлов до простейших схем) и связей между ними.

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов ПК, к которым относят процессор, оперативное запоминающее устройство, внешние запоминающие устройства и периферийные устройства.

Основным принципом построения всех современных ПК является программное управление.

Классическая архитектура фон Неймана

В $1946$ году американские математики Джон фон Нейман, Герман Голдштейн и Артур Бёркс в совместной статье изложили новые принципы построения и функционирования ЭВМ. На основе этих принципов производилось $1$-е и $2$-е поколение компьютеров. В следующих поколениях происходили некоторые изменения, но принципы фон Неймана (как они были названы) сохранялись.

Основные принципы фон Неймана:

  1. Использование двоичной системы счисления в ПК, в которой устройствам гораздо проще выполнять арифметико-логические операции, чем в десятичной.
  2. Программное управление ПК. Работа ПК управляется программой, которая состоит из набора команд, выполняющихся последовательно одна за другой. Создание машины с хранимой в памяти программой положило начало программированию.
  3. Данные и программы хранятся в памяти ПК. Команды и данные кодируются одинаково в двоичной системе.
  4. Ячейки памяти ПК имеют последовательно пронумерованные адреса. Возможность обращения к любой ячейке памяти по ее адресу позволила использовать переменные в программировании.
  5. Возможность условного перехода при выполнении программы. Команды в ПК выполняются последовательно, но при необходимости можно реализовать переход к любой части кода.

Основным принципом было то, что программа уже стала не постоянной частью машины, а изменяемой, в отличие от аппаратуры, которая остается неизменной и очень простой.

Фон Нейманом также была предложена структура ПК (рис. 1).

Рисунок 1. Структура ПК

В состав машины фон Неймана входили:

  • запоминающее устройство (ЗУ);
  • арифметико-логическое устройство (АЛУ), которое выполняло все арифметические и логические операции;
  • устройство управления (УУ), которое координирует действия всех узлов машины в соответствии с программой;
  • устройства ввода-вывода.

Программы и данные вводились в ЗУ из устройства ввода через АЛУ. Все команды программы записывались в ячейки памяти последовательно, а данные для обработки – в произвольные ячейки.

Команда состояла из указания операции, которую необходимо выполнить, и адресов ячеек памяти, в которых хранятся данные и над которыми необходимо выполнить нужную операцию, а также адреса ячейки, в которую необходимо записать результат (для хранения в ЗУ).

Из АЛУ результаты выводятся в ЗУ или устройство вывода. Принципиально эти устройства отличаются тем, что в ЗУ данные хранятся в удобном для обработки ПК виде, а на устройства вывода (монитор, принтер и т.п.) в удобном для человека.

От УУ на другие устройства поступают сигналы с командами, а от других устройств УУ получает информацию о результате их выполнения.

В УУ содержится специальный регистр (ячейка) – счетчик команд, в который записывается адрес первой команды программы. УУ считывает из памяти содержимое соответствующей ячейки памяти и помещает его в специальное устройство – регистр команд. УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

После выполнения команды счетчик команд увеличивается на $1$ и указывает на следующую команду программы. При необходимости выполнения команды, которая не следует по порядку за текущей, специальная команда перехода содержит адрес ячейки, в которую нужно передать управление.

Архитектура современных ПК

В основу архитектуры современных ПК заложен магистрально-модульный принцип. ПК состоит из отдельных частей – модулей, которые являются относительно самостоятельными устройствами ПК (напрмер, процессор, оперативная память, контроллер, дисплей, принтер, сканер и т.д.).

Модульный принцип позволяет пользователю самостоятельно комплектовать необходимую конфигурацию ПК и производить при необходимости его обновление. Модульная организация системы опирается на магистральный принцип обмена информацией. Для работы ПК как единого механизма необходимо осуществлять обмен данными между различными устройствами, за что отвечает системная (магистральная) шина, которая выполняется в виде печатного мостика на материнской плате.

Основные особенности архитектуры ПК сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Подобная архитектура характеризуется ее открытостью – возможностью включения в ПК дополнительных устройств (системных и периферийных), а также возможностью простого встраивания программ пользователя на любом уровне программного обеспечения ПК.

Замечание 1

Также совершенствование архитектуры ПК связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти, в которой хранятся данные, ПК считывает все исполняемые команды. Таким образом больше всего обращений центральный процессор совершает к памяти и ускорение обмена с памятью приведет к существенному ускорению работы всей системы в целом.

Т.к. при использовании системной магистрали для обмена процессора с памятью приходится учитывать скоростные ограничения самой магистрали, то существенного ускорения обмена данными с помощью магистрали добиться невозможно.

Для решения этого вопроса был предложен следующий подход. Системная память вместо системной магистрали подключается к специальной высокоскоростной шине, которая дистанционно находится ближе к процессору и не требует сложных буферов и больших расстояний. В этом случае обмен с памятью идет с максимально возможной для процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это решение стало с ростом быстродействия процессора.

Таким образом, структура ПК из одношинной, которая применялась только в первых компьютерах, становится трехшинной.

Рисунок 2. Трехшинная структура ПК

АЛУ и УУ в современных ПК образуют процессор. Процессор, который состоит из одной или нескольких больших интегральных схем, называется микропроцессором или микропроцессорным комплектом.

Многопроцессорная архитектура ПК

Наличие в ПК нескольких процессоров означает, что параллельно может быть организовано много потоков данных и команд, т.е. одновременно могут выполняться несколько фрагментов одной задачи.

Рисунок 3. Архитектура многопроцессорного ПК

Многомашинная вычислительная система

В архитектуре многомашинной вычислительной системы каждый процессор имеет свою оперативную память. Применение многомашинной вычислительной системы эффективно при решении задач, которые имеют очень специальную структуру, которая должна состоять из такого количества ПК, на сколько слабо связанных подзадач разбита система.

Многопроцессорные и многомашинные вычислительные системы имеют преимущество перед однопроцессорными в быстродействии.

Архитектура с параллельными процессорами

В данной архитектуре несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе, т. е. по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

Рисунок 4. Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и другие архитектурные решения, отличные от рассмотренных выше.

Author24.ru

Архитектура компьютерной системы: классификация и определение

Современные компьютерные решения могут быть классифицированы, исходя из их отнесения к той или иной архитектуре. Но что она может представлять собой? Каковы основные подходы к пониманию данного термина?

Архитектура компьютерных систем как совокупность аппаратных компонентов

В чем заключается сущность понятия «архитектура компьютерной системы»? Под соответствующим термином прежде всего можно понимать совокупность электронных компонентов, из которых состоит ПК, взаимодействующих в рамках определенного алгоритма с использованием различных типов интерфейсов.

Основные компоненты, которые входят в состав компьютерной системы:

  • устройство ввода;
  • главный вычислительный чипсет;
  • устройства для запоминания данных;
  • компоненты, предназначенные для вывода информации.

В свою очередь, каждый из отмеченных компонентов может включать в себя большое количество отдельных устройств. Например, главный вычислительный чипсет может включать в себя процессор, набор микросхем на материнской плате, модуль обработки графических данных. При этом тот же процессор может состоять из иных компонентов: например, ядра, кэш-памяти, регистров.

Исходя, собственно, из структуры конкретных аппаратных компонентов ПК, определяется то, какая архитектура компьютерной системы выстроена. Рассмотрим основные критерии, в соответствии с которыми те или иные вычислительные решения могут классифицироваться.

Классификация компьютерных систем

В соответствии с распространенным в среде экспертов подходом, компьютерные системы по своей архитектуре могут относиться:

  • к большим ЭВМ;
  • к мини-ЭВМ;
  • к персональным компьютерам.

Следует отметить, что данная классификация вычислительных решений, в соответствии с которой может определяться архитектура компьютерной системы, многими экспертами признается устаревшей. В частности, те же персональные компьютеры сегодня могут подразделяться на большое количество разновидностей, очень несхожих по назначению и характеристикам.

Таким образом, по мере того как развиваются компьютерные системы, архитектура компьютера может быть классифицирована с использованием меняющихся критериев. Тем не менее обозначенная схема считается традиционной. Полезно будет рассмотреть ее подробнее. В соответствии с ней, первый тип ЭВМ - те, что относятся к архитектуре больших машин.

Большие ЭВМ

Большие ЭВМ,или мейнфреймы, чаще всего используются в промышленности - как центры обработки данных по различным производственным процессам. В них могут быть инсталлированы мощные, исключительно высокопроизводительные чипы.

Рассматриваемая архитектура компьютерной системы может осуществлять до нескольких десятков миллиардов вычислений в секунду. Стоят большие ЭВМ несопоставимо дороже остальных систем. Как правило, их обслуживание требует участия довольно большого количества людей, имеющих необходимую квалификацию. Во многих случаях их работа осуществляется в рамках подразделений, организованных в качестве вычислительного центра предприятия.

Мини-ЭВМ

Архитектура вычислительных систем и компьютерных сетей на их основе может быть представлена решениями, классифицированными как мини-ЭВМ. В целом их назначение может быть аналогичным, что и в случае с мейнфреймами: весьма распространено применение соответствующего типа компьютеров в промышленности. Но, как правило, их использование свойственно для относительно небольших предприятий, средних бизнесов, научных организаций.

Современные мини-ЭВМ: возможности

Во многих случаях применение данных компьютеров осуществляется как раз в целях эффективного управления внутрикорпоративными сетями. Таким образом, рассматриваемые решения могут использоваться, в частности, как высокопроизводительные серверы. Они также оснащены очень мощными процессорами, такими как, например, Xeon Phi от Intel. Данный чип может работать со скоростью более 1 терафлопса. Соответствующий процессор рассчитан на производство по техпроцессу 22 нм и имеет пропускную способность памяти в значении 240 ГБ/с5.

Персональные компьютеры

Следующий тип компьютерной архитектуры - ПК. Вероятно, он является самым распространенным. ПК не столь мощны и высокопроизводительны как мейнфреймы и микро-ЭВМ, но во многих случаях способны решать задачи и в сфере промышленности, и в области науки, не говоря о типичных пользовательских задачах, таких как запуск приложений и игр.

Еще одна примечательная особенность, характеризующая персональные компьютеры, заключается в том, что их ресурсы могут быть объединены. Вычислительные мощности достаточно большого количества ПК, таким образом, могут быть сопоставимы с производительностью компьютерных архитектур вышестоящего класса, но, конечно, достигнуть их уровней номинально с помощью ПК весьма проблематично.

Тем не менее архитектура компьютерных систем, сетей на основе персональных компьютеров характеризуется универсальностью, с точки зрения реализации в различных отраслях, доступностью и масштабируемостью.

Персональные компьютеры: классификация

Как мы отметили выше, ПК могут быть классифицированы на большое количество разновидностей. В числе таковых: десктопы, ноутбуки, планшеты, КПК, смартфоны - объединяющие в себе ПК и телефоны.

Как правило, самыми мощными и производительными архитектурами обладают десктопы; наименее мощные - смартфоны и планшеты в связи с небольшими размерами и необходимостью существенно уменьшать ресурсы аппаратных компонентов. Но многие из соответствующих девайсов, особенно топовых моделей, по скорости работы, в принципе, сопоставимы с ведущими моделями ноутбуков и бюджетными десктопами.

Отмеченная классификация ПК свидетельствует об их универсальности: в тех или иных разновидностях они могут решать типичные пользовательские задачи, производственные, научные, лабораторные. ПО, архитектура компьютерных систем соответствующего типа во многих случаях адаптированы к использованию рядовым гражданином, не имеющим специальной подготовки, которая может потребоваться человеку, работающему с мейнфреймом или же мини-ЭВМ.

Как установить отнесение вычислительного решения к ПК?

Главный критерий отнесения вычислительного решения к ПК - факт его персональной ориентированности. То есть соответствующего типа компьютер рассчитан, главным образом, на задействование одним пользователем. Однако многие инфраструктурные ресурсы, к которым он обращается, носят неоспоримо социальный характер: это можно проследить на примере пользования интернетом. При том что вычислительное решение персональное, практическая эффективность в его задействовании может фиксироваться только лишь в случае получения человеком доступа к источникам данных, сформированным другими людьми.

Классификация ПО для компьютерных архитектур: мейнфреймы и мини-ЭВМ

Наряду с классификацией компьютеров, рассмотренной нами выше, существуют также критерии отнесения к тем или иным категориям программ, которые инсталлируются на соответствующие типы вычислительной техники. Что касается мейнфреймов и близких им по назначению, а в некоторых случаях и по производительности мини-ЭВМ, то на них, как правило, реализована возможность задействования нескольких операционных систем, адаптированных для решения конкретных производственных задач. В частности данные ОС могут быть приспособлены к запуску различных средств автоматизации, виртуализации, внедрения промышленных стандартов, интеграции с различными видами ПО прикладного назначения.

Классификация ПО: персональные компьютеры

Программы для обычных ПК могут быть представлены в разновидностях, оптимизированных для решения, в свою очередь, пользовательских задач, а также тех производственных, что не требуют того уровня производительности, который характеризует мейнфреймы и мини-ЭВМ. Есть, таким образом, программы для ПК промышленные, научные, лабораторные. ПО, архитектура компьютерных систем соответствующего типа зависит от конкретной отрасли, в которой они применяются, от предполагаемого уровня квалификации пользователя: очевидно, что профессиональные решения для промышленного дизайна могут быть не рассчитаны на человека, имеющего лишь базовые знания в области применения компьютерных программ.

Программы для ПК в тех или иных разновидностях имеют во многих случаях интуитивно понятный интерфейс, различную справочную документацию. В свою очередь, мощности мейнфреймов и мини-ЭВМ могут быть в полной мере использованы при условии не только следования инструкциям, но также и при регулярном внесении пользователем изменений в структуру запускаемых программ: для этого и могут понадобиться дополнительные знания, например, связанные с использованием языков программирования.

Уровни программной архитектуры ПК

Понятие «архитектура компьютерных систем» учебник информатики, в зависимости от взглядов его автора, может трактовать по-разному. Еще одна распространенная интерпретация соответствующего термина предполагает его соотнесение с уровнями программного обеспечения. При этом не имеет принципиального значения то, в какой конкретно вычислительной системе соответствующие уровни ПО реализованы.

В соответствии с данным подходом, под архитектурой компьютера следует понимать набор различных типов данных, операций, характеристик программного обеспечения, задействуемого в целях поддержания функционирования аппаратных компонентов компьютера, а также создания условий, при которых пользователь получает возможность применить данные ресурсы на практике.

Архитектуры программных уровней

Эксперты выделяют следующие основные архитектуры компьютерных систем в контексте рассматриваемого подхода к пониманию соответствующего термина:

  • цифровая логическая архитектура вычислительного решения - фактически, аппаратное обеспечение ПК в виде различных модулей, ячеек, регистров - например, находящихся в структуре процессора;
  • микроархитектура на уровне интерпретации различных микропрограмм;
  • архитектура трансляции специальных команд - на уровне ассемблера;
  • архитектура интерпретации соответствующих команд и их реализации в программный код, понятный операционной системе;
  • архитектура компиляции, позволяющая вносить изменения в программные коды тех или иных видов ПО;
  • архитектура языков высокого уровня, позволяющих приспособить программные коды к решению конкретных пользовательских задач.

Значение классификации программной архитектуры

Конечно, эта классификация в контексте рассмотрения данного термина как соответствующего уровням программного обеспечения, может быть очень условной. Архитектура компьютера и проектирование компьютерных систем, в зависимости от их технологичности и назначения, может потребовать иных подходов разработчиков в классификации уровней ПО, а также, собственно, к пониманию сущности термина, о котором идет речь.

Несмотря на то что данные представления теоретические, их адекватное понимание имеет большое значение, поскольку способствует разработке более эффективных концептуальных подходов к выстраиванию тех или иных типов вычислительной инфраструктуры, позволяет разработчикам оптимизировать свои решения к запросам пользователей, решающих конкретные задачи.

Резюме

Итак, мы определили сущность термина «архитектура компьютерной системы», то, каким образом он может рассматриваться в зависимости от того или иного контекста. В соответствии с одним из традиционных определений, под соответствующей архитектурой может пониматься аппаратная структура ПК, предопределяющая уровень его производительности, специализацию, требования к квалификации пользователей. Данный подход предполагает классификацию современных компьютерных архитектур на 3 основные категории - мейнфреймы, мини-ЭВМ, а также ПК (которые, в свою очередь, также могут быть представлены различными разновидностями вычислительных решений).

Как правило, каждый тип указанных архитектур рассчитан на решение определенных задач. Мейнфреймы и мини-ЭВМ чаще всего находят применение в промышленности. С помощью ПК также можно решать широкий круг производственных задач, осуществлять инженерные разработки - для этого также приспособлена соответствующая архитектура компьютерных систем. Лабораторные работы, научные эксперименты с такой техникой становятся понятнее и эффективнее.

Еще одна трактовка термина, о котором идет речь, предполагает его соотнесение с конкретными уровнями программного обеспечения. В этом смысле архитектура компьютерных систем - рабочая программа, обеспечивающая функционирование ПК, а также создающая условия для использования его вычислительных мощностей на практике в целях решения тех или иных пользовательских задач.

fb.ru

Что собой представляет архитектура ПК

Архитектура современного ПК представляет собой логическую организацию, структуру и ресурсы, то есть механизмы вычислительной системы. Последние могут выделяться на определенный временной интервал для процесса обработки информации.

Правила построения персонального компьютера

Основой современной вычислительной машины являются принципы архитектуры ПК, сформулированные Джоном Нейманом:

1. Программное управление. Состоит из группы команд, которые выполняет процессор автоматически (одну за другой в определенной последовательности).

2. Однородность памяти. Программы и другие данные хранятся в одном разделе памяти. Одни и те же действия выполняются и над данными, и над командами.

3. Адресность. Основная память состоит из пронумерованных секторов (ячеек).

Построение персонального компьютера

Классическая архитектура ПК строится на вышеперечисленных принципах. Она определяет условия работы, информационные связи, взаимное соединение главных логических узлов персонального компьютера. К ним относятся внешняя и основная память, центральный процессор и периферийные устройства.

Персональный компьютер конструктивно выполнен в виде основного системного блока. К нему через специализированные разъемы присоединяются периферийные устройства. Архитектура ПК содержит следующие основные узлы: системную плату, блок питания, накопители на жестком магнитном и оптическом дисках, интерфейсы для дополнительных и внешних устройств. В свою очередь, на материнской (системной) плате располагаются микропроцессор, тактовый генератор импульсов, математический сопроцессор и микросхемы памяти. А также таймер, контроллеры периферийных устройств, видео- и звуковая карта.

Архитектура ПК основана на модульно-магистральном принципе. Данное правило позволяет пользователю самостоятельно комплектовать требуемую конфигурацию персонального компьютера, а также (при необходимости) производить ее модернизацию. Удобство модульной организации системы заключается в магистральном принципе обмена данными. Контроллеры всех устройств взаимодействуют с оперативной памятью и микропроцессором через главную магистраль передачи информации, которую называют "системной шиной". Она выполнена в виде печатного моста на материнской плате. Системная шина – это главный интерфейс вычислительной машины, и вся архитектура ПК построена вокруг нее. Именно этот элемент обеспечивает связь и сопряжение всех устройств друг с другом. Системная шина производит три направления передачи данных:

Между основной памятью и микропроцессором;

Между портами ввода и вывода внешних устройств и процессором;

Между портами и основной памятью.

Внешние устройства персонального компьютера обеспечивают связь последнего с окружающей средой: объектами управления, пользователями и другими вычислительными машинами.

Основные функциональные характеристики ПК:

1. Быстродействие, производительность, тактовая частота.

2. Разрядность кодовых шин интерфейсов и микропроцессора.

3. Типы локальных и системных контроллеров.

4. Размер оперативной памяти.

5. Емкость жесткого диска.

6. Наличие, размер и виды кэш-памяти.

7. Тип видеоадаптера.

8. Вид мультимедийных аудиосредств.

9. Программное обеспечение.

10. Аппаратная совместимость с другими персональными компьютерами.

11. Возможность работы машины в вычислительной сети, а также в многозадачном режиме.

Вычислительные системы и их классификация

Лекция № 2

1. Вычислительные системы и их классификация. 1

2. Архитектура персонального компьютера. 6

3. Виды и назначение компьютерных сетей. 14

4. Архитектура компьютерной сети. 20

5. Способы соединения между собой устройств сети. 23

6. Классификация компьютерных сетей. 24

7. Иерархические сети. 26

В современном информационном обществе компьютер – не роскошь, а средство решения тех или иных задач. А так задачи бываю разной сложности и могут относиться к различным областям деятельности, то и компьютеры должны быть различны. Но это не значит, что нам необходимо приобретать под решение каждой задачи новый ПК, однако нужно четко понимать соотношение уровня задачи и мощности компьютера.

Компьютер – многозначный термин, наиболее часто употребляется в качестве обозначения программно управляемого электронного устройства обработки информации. Хотя на сегодняшний день, когда мы говорим об обработке, хранение и получении информации, то правильнее употреблять термин вычислительная система (ВС).

Чтобы судить о возможностях вычислительных систем, их принято разделять на группы по определенным признакам, т.е. классифицировать. Существует достаточно много систем классификации. Мы рассмотрим лишь некоторые из них, сосредоточившись на тех, о которых наиболее часто упоминают в доступной технической литературе и средствах массовой информации.

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

· Первое поколение, 50-е годы; ЭВМ на электронных вакуумных лампах.

· Второе поколение, 60-е годы; ЭВМ на дискретных полупроводниковых приборах (транзисторах).

· Третье поколение, 70-е годы; ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни – тысячи транзисторов в одном корпусе).

· Четвертое поколение, 80-е годы; ЭВМ на больших и сверхбольших интегральных схемах – микропроцессорах (десятки тысяч – миллионы транзисторов в одном.

· Пятое поколение, 90-е годы; ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

· Шестое и последующие поколения; оптоэлектронные ЭВМ с массовым параллелизмом и нейтронной структурой – с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейтронных биологических систем.

Каждое следующее поколение ЭВМ по сравнению с предыдущими обладает существенно лучшими характеристиками. Наращивается производительность ЭВМ и емкость всех запоминающих устройств при этом размеры уменьшаются.

По назначению:

Универсальные предназначаются для решения широкого класса задач (от математических расчетов до обработки мультимедиа), т.е. такие ВС должны обслуживать программные приложения, разработанные для самых разных и далеко отстоящих друг от друга направлений научных исследований.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ориентированы на решение узкого класса задач. Узкая ориентация этих ВС позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

Классификацию вычислительных машин по таким показателям, как габариты и производительность, можно представить следующим образом.

По размерам:

· сверхбольшие (суперЭВМ)

· большие

· сверхмалые (микроЭВМ)

Функциональные возможности ЭВМ обуславливают важнейшие технико-эксплуатационные характеристики:

· быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

· разрядность и формы представления чисел, с которыми оперирует ЭВМ;

· номенклатура, емкость и быстродействие всех запоминающих устройств;

· номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

· типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

· способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

· типы и технико-эксплуатационные характеристики операционных систем, используемых в машине;

· наличие и функциональные возможности программного обеспечения;

· способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);

· система и структура машинных команд;

· возможность подключения к каналам связи и к вычислительной сети;

· эксплуатационная надежность ЭВМ;

· коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики.

К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов – десятки миллиардов операций в секунду. Супер-компьютеры используются для решения сложных и больших научных задач (метеорология, гидродинамика и т.п.), в управлении, разведке, в качестве централизованных хранилищ информации и т.д.

Большие ЭВМ за рубежом чаще всего называют мэйнфреймами (Mainframe). Они и до сегодняшнего дня остаются наиболее мощными (не считая суперкомпьютеров) вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации.

Сервер – мощный компьютер в вычислительных сетях, который обеспечивает обслуживание подключенных к нему компьютеров и выход в другие сети. Любой компьютер, если установить на нем соответствующее сетевое программное обеспечение, способен стать сервером.

Малые ЭВМ (мини ЭВМ) – надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями.

Микрокомпьютеры – это компьютеры, в которых центральный процессор выполнен в виде микропроцессора. Продвинутые модели микрокомпьютеров имеют несколько микропроцессоров. Производительность компьютера определяется не только характеристиками применяемого микропроцессора, но и ёмкостью оперативной памяти, типами периферийных устройств, качеством конструктивных решений и др.

Микрокомпьютеры представляют собой инструменты для решения разнообразных сложных задач. Их микропроцессоры с каждым годом увеличивают мощность, а периферийные устройства – эффективность.

Персональные компьютеры (ПК) – это микрокомпьютеры универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком.

В класс персональных компьютеров входят различные машины – от недорогих домашних ПК и игровых приставок, подключаемых к телевизорам, до сверхсложных машин с мощным процессором, накопителем памяти ёмкостью в десятки Гигабайт, с цветными графическими устройствами высокого разрешения, средствами мультимедиа и другими дополнительными устройствами.

Требования к персональному компьютеру:

· стоимость от нескольких сотен до 5-10 тысяч долларов;

· наличие внешних запоминающих устройств на магнитных и оптических носителях;

· объём оперативной памяти не менее 4 Мбайт;

· наличие операционной системы;

· способность работать с программами на языках высокого уровня;

· ориентация на пользователя – непрофессионала (в простых моделях).

Портативные компьютеры сейчас стало очень модным устройством. Теперь его выбирают не только руководители предприятия, менеджеры, учёны, журналисты, которым приходится работать вне офиса – дома, на презентациях или во время командировок, но и студенты, а так же те кто хотят сэкономить дома место.

Основные разновидности портативных компьютеров:

Ноутбук (англ. Notebook блокнот, блокнотный ПК). Одна из наиболее популярных разновидностей. Основной конкурент настольным компьютерам по количеству спроса. О нем знают, почти все и всё. Во многом он не уступает обычному компьютеру по производительности, и уж тем более – в мобильности. Он как раз для того и появился на свет, чтобы быть мобильным. Таким, чтобы его можно было взять с собой, прогуляться в парк, сесть на скамейку и работать под открытым небом. А еще можно поехать с ним за границу, ведь он умещается в небольшую сумку.

Ноутбук управляется клавиатурой и тачпадом, выполняющим функции обычный мыши настольного ПК. Оба устройства встроены, как и экран ноутбука. Корпус похож на книгу, содержимое которой, можно прочесть, только открыв ее. В открытом положении его удерживают шарниры, чаще всего, размещенные по бокам. В закрытом – это пластиковая книга, весом, обычно от трех килограмм. Иногда встречаются металлические экземпляры.

Нетбук (англ. Netbook ). Уменьшенная копия обычного ноутбука, позволившая спекулянтам – производителям существенно демпинговать цены на рынке ноутбуков. В отличии от своих старших братьев и сестер, стоят гораздо дешевле, но и довольствоваться приходится существенно меньшими размерами, производительностью, клавиатурой, тачпадом, экраном и всем прочим, что можно увидеть на ноутбуке.

Планшетный компьютер (планшетный ПК , tablet PC ) самые маленькие современные персональные компьютеры. Умещаются на ладони. Оборудованный сенсорным экраном и позволяющий работать при помощи стилуса или пальцев, как с использованием, так и без использования клавиатуры и мыши.

Таким образом различают следующие классификации компьютерной техники:

· по этапам развития (по поколениям);

· по архитектуре;

· по производительности;

· по условиям эксплуатации;

· по количеству процессоров;

· по потребительским свойствам и т.д.

Однако четких границ в современной вычислительной технике не существует. По мере совершенствования структур и технологии производства, появляются новые классы компьютеров, границы существующих классов существенно изменяются.

Компьютер – это универсальная техническая система для накопления, обработки и передачи информации. При рассмотрении компьютерных устройств, принято различать их архитектуру и структуру.

В 1946-1948 годах в Принстонском университете (США) коллектив исследователей под руководством Джона фон Неймана разработал проект ЭВМ, который никогда не был реализован, но идеи данного используются и по сей день. Этот проект получил название машины фон Неймана, или Принстонской машины. Принципы вычислительной машины сформулированные фон Нейманом следующие:

1. Принцип программного управления (программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определённой последовательности).

2. Принцип однородности памяти (программы и данные хранятся в одной и той же памяти; над командами можно выполнять такие же действия, как и над данными).

3. Принцип адресности (основная память структурно состоит из нумерованных ячеек).

Архитектура современных персональных ЭВМ основана на магистрально-модульном принципе. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить её модернизацию.

Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. Магистраль (системная шина) – это набор электронных линий, связывающих воедино центральный процессор, системную память и периферийные устройства.

Рис. 1.5. Архитектура ЭВМ магистрально-модульного принципа

Набор проводов входящих в состав системной шины можно разделить на отдельные группы: шину адреса, шину данных и шину управления.

Шина данных . По этой шине данные передаются между различными устройствами. Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт.

Шина адреса. Каждая ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине. Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса.

Шина управления . По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию – считывание или запись информации из памяти – нужно производить, синхронизируют обмен информацией между устройствами и т.д.

Все устройства (модули) компьютера подключаются к магистрали.Однако, непосредственно к магистрали можно подключить лишь процессор и оперативную память, остальные устройства подключаются с помощью специальных согласующих устройств – контроллеров (контроллер клавиатуры, контроллер видеопамяти и т.д.)

Рассмотрим состав и назначение основных блоков ПК. В настоящее время в базовой конфигурации рассматривают четыре устройства:

· системный блок;

· монитор;

· клавиатуру;

Системный блок. Все основные компоненты настольного компьютера находятся в нутрии системного блока. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, называют внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

Архитектура ПК определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера:

· центрального микропроцессора;

· основной памяти;

· внешней памяти;

· периферийных устройств.

Микропроцессор (МП) . Это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

Назначение процессора:

1. управлять работой ЭВМ по заданной программе;

2. выполнять операции обработки информации.

Микропроцессор выполнен в виде сверхбольшой интегральной схемы. Термин "большая" относится не к размерам, а к количеству электронных компонентов, размещенных на маленькой кремниевой пластинке. Их число достигает нескольких миллионов. Чем больше компонентов содержит микропроцессор, тем выше производительность компьютера. Размер минимального элемента микропроцессора в 100 раз меньше диаметра человеческого волоса. Микропроцессор штырьками вставляется в специальное гнездо на системной плате, которое имеет форму квадрата с несколькими рядами отверстий по периметру.

Возможности компьютера как универсального исполнителя по работе с информацией определяются системой команд процессора. Эта система команд представляет собой язык машинных команд (ЯМК). Из команд ЯМК составляются программы управления работой компьютера. Отдельная команда определяет отдельную операцию (действие) компьютера. В ЯМК существуют команды, по которым выполняются арифметические и логические операции, операции управления последовательностью выполнения команд, операции передачи данных из одних устройств памяти в другие и пр.

В состав микропроцессора входят:

· устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;

· арифметико-логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор);

· микропроцессорная память (МПП) – служит для кратковременного характера записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессор. Регистры – быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);

· интерфейсная система микропроцессорареализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) – совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O – Input/Output port) – аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.

Важнейшей характеристикой процессора являетсятактовая частота – количество операций, выполняемых им за 1 секунду (Гц). Процессор 8086, произведенный фирмой Intel для персональных компьютеров IBM, мог выполнять не более 10 млн. операций в секунду, т.е. его частота была равна 10 МГц. Тактовая частота процессора 80386 составляла уже 33 МГц, а процессор Pentium совершает в среднем 100 млн. операций в секунду.

Кроме того, каждый конкретный процессор может работать не более чем с определенным количеством оперативной памяти. Для процессора 8086 это количество составляло всего лишь 1 Мбайт, для процессора 80286 оно увеличилось до 16 Мбайт, а для Pentium составляет 1 Гбайт. Кстати, в компьютере, как правило, имеется гораздо меньший объем оперативной памяти, чем максимально возможный для его процессора.

Процессор и основная память находятся на большой плате, которая называетсяматеринской. Для подключения к ней различных дополнительных устройств (дисководов, манипуляторов типа мыши, принтеров и т.д.) служат специальные платы – контроллеры. Они вставляются в разъемы (слоты) на материнской плате, а к их концу(порту), выходящему наружу компьютера, подключается дополнительное устройство.

Примеры характеристик микропроцессоров:

1. МП Intel-80386: адресное пространство – 232 байта = 4 Гб, разрядность 32, тактовая частота – от 25 до 40 МГц

2. МП Pentium: адресное пространство – 232 байта = 4 Гб, разрядность – 64 Тб, тактовая частота – от 60 до 100 МГц.

Память компьютера. Память ПК делится на внутреннюю и внешнюю.

Внутренняя память ПК включает в себя оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ).

ОЗУ – быстрая, полупроводниковая, энергозависимая память. В ОЗУ хранятся исполняемая в данный момент программа и данные, с которыми она непосредственно работает. Это значит, что когда вы запускаете какую-либо компьютерную программу, находящуюся на диске, она копируется в оперативную память, после чего процессор начинает выполнять команды, изложенные в этой программе. Часть ОЗУ, называемая "видеопамять", содержит данные, соответствующие текущему изображению на экране. При отключении питания содержимое ОЗУ стирается. Быстродействие (скорость работы) компьютера напрямую зависит от величины его ОЗУ, которое в современных компьютерах может доходить до 4 Гбайт. В первых моделях компьютеров оперативная память составляла не более 1 Мбайт. Современные прикладные программы часто требуют для своего выполнения не менее 4 Мбайт ОЗУ; в противном случае они просто не запускаются.

ОЗУ – это память, используемая как для чтения, так и для записи информации. При отключении электропитания информация в ОЗУ исчезает (энергозависимость).

ПЗУ – быстрая, энергонезависимая память. ПЗУ – это память, предназначенная только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере.

В ПЗУ находятся:

· тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;

· программы для управления основными периферийными устройствами – дисководом, монитором, клавиатурой;

· информация о том, где на диске расположена операционная система.

Основная память состоит из регистров. Регистр – это устройство для временного запоминания информации в оцифрованной (двоичной) форме. Запоминающим элементом в регистре является триггер – устройство, которое может находиться в одном из двух состояний, одно из которых соответствует запоминанию двоичного нуля, другое – запоминанию двоичной единицы. Триггер представляет собой крошечный конденсатор-батарейку, которую можно заряжать множество раз. Если такой конденсатор заряжен – он как бы запомнил значение "1", если заряд отсутствует – значение "О". Регистр содержит несколько связанных друг с другом триггеров. Число триггеров в регистре называется разрядностью компьютера. Производительность компьютера напрямую связана с разрядностью, которая бывает равной 8, 16, 32 и 64.

Материнская плата . Самой большой электронной платой в компьютере является системная, или материнская плата. На ней располагаются микропроцессор, оперативная память, шина (или шины), BIOS. Кроме того, там находятся электронные схемы (контроллеры), управляющие некоторыми устройствами компьютера. Так, контроллер клавиатуры всегда находится на материнской плате. Часто там же находятся и контроллеры для других устройств (жестких дисков, дисководов для дискет и др.).

Контроллеры. Электронные схемы, управляющие различными устройствами компьютера, называют контроллерами. Во всех компьютерах имеются контроллеры для управления клавиатурой, монитором, дисководами для дискет, жестким диском и т.д. В большинстве компьютеров некоторые контроллеры располагаются на отдельных электронных платах – платах контроллеров. Эти платы вставляются в специальные разъемы (слоты) на материнской плате. При вставке в разъем материнской платы контроллер подключается к шине – магистрали.

Источник питания. Это блок, содержащий системы автономного и сетевого энергопитания ПК.

Внешняя память. Она относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешняя память содержит разнообразные виды запоминающих устройств, но наиболее распространенными, имеющимися практически на любом компьютере, являются накопители на жестких (HDD), накопители на оптических дисках (CD-ROM, CD-R, CR-W, DVD) и др.