Расчет количества средств пожаротушения резервуара. Объем пожарных резервуаров Расчет объема пожарного резервуара для наружного пожаротушения


Вода является наиболее эффективным средством в борьбе с пожарами. Поэтому установка - это экономически выгодное мероприятие, направленное на предотвращение или локализацию возгорания.

Виды пожарных емкостей

Пожарный резервуар – это емкость, заполненная водой, сконструированная с учетом установленных пожарных норм и требований. При проектировании резервуара учитываются особенности защищаемого объекта и климатические особенности местности. Исходя из этого, различают 3 вида пожарных емкостей:

  • подземные;
  • надземные;
  • полуподземные.

Для изготовления пожарных резервуаров может использоваться кирпич, сталь, камень, железобетон или листовой строительный материал.

Составляющие части пожарного резервуара

Каждая пожарная емкость должна быть оснащена такими элементами:

  • системы вентиляций;
  • трубопроводы для поступления и отведения жидкости;
  • переливные устройства;
  • люки для проведения ремонтных работ;
  • сливы;
  • лестницы или скобы;
  • указатели уровня жидкости.

Важно позаботиться о сохранности и целостности водоема, продумав средства защиты от механического воздействия и других внешних факторов. Для этого используется гидро- и теплоизоляционные материалы. Емкость, выполненная из металла, обязательно должна быть заземлена.

Обязательное средство в обустройстве пожарного водоема (независимо от того, искусственный он или естественный) – обеспечение свободного подъезда для транспорта.

Расчет емкости пожарных водоемов

Наполнение и поддержание определенного объема воды в резервуаре особенно важно, если невозможно потушить пламя, используя прямой источник водоснабжения.

Пожарный водоем должен содержать необходимый объем жидкости, чтобы обеспечить:

  • специальные системы пожаротушения – дренчерные, спринклерные и т.д.
  • удовлетворение бытовых и производственных потребностей во время борьбы с огнем;
  • тушение пламени посредством наружных гидрантов или внутренних кранов.

Для определения точного количества необходимого запаса воды в резервуаре, нужно учитывать такие факторы:

  • скорость подачи воды из водоема;
  • время, в течение которого обеспечивается тушение пламени;
  • среднее количество случаев пожара в отдельно взятый период;
  • скорость наполнения резервуара.

При расчете емкости пожарного водоема и среднего расхода воды учитывается трехкратное время тушения пожара посредством наибольшего резервуара, а также охлаждение остальных емкостей.

Исходя из полученных данных можно определить количество и объем пожарных резервуаров на площадке.

Расчеты сил и средств выполняют в следующих случаях:

  • при определении требуемого количества сил и средств на тушение пожара;
  • при оперативно-тактическом изучении объекта;
  • при разработке планов тушения пожаров;
  • при подготовке пожарно-тактических учений и занятий;
  • при проведении экспериментальных работ по определению эффектив­ности средств тушения;
  • в процессе исследования пожара для оценки действий РТП и подразделений.

Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)

    • характеристика объекта (геометрические размеры, характер пожарной нагрузки и ее размещение на объекте, размещение водоисточников относительно объекта);
    • время с момента возникновения пожара до сообщения о нем (зависит от наличия на объекте вида средств охраны, средств связи и сигнализации, правильности действий лиц, обнаруживших пожар и т.д.);
    • линейная скорость распространения пожара V л ;
    • силы и средства, предусмотренные расписанием выездов и время их сосредоточения;
    • интенсивность подачи огнетушащих средств I тр .

1) Определение времени развития пожара на различные моменты времени.

Выделяются следующие стадии развития пожара:

  • 1, 2 стадии свободного развития пожара, причем на 1 стадии (t до 10 мин) линейная скорость распространения принимается равной 50% ее максимального значения (табличного), характерного для данной категории объектов, а с момента времени более 10 мин она принимается равной максимальному значению;
  • 3 стадия характеризуется началом введения первых стволов на туше­ние пожара, в результате чего линейная скорость распространения пожара уменьшается, поэтому в промежутке времени с момента введения первых стволов до момента ограничения распространения пожара (момент локали­зации), ее значение принимается равным 0,5 V л . В момент выполнения условий локализации V л = 0 .
  • 4 стадия – ликвидация пожара.

t св = t обн + t сооб + t сб + t сл + t бр (мин.), где

  • t св – время свободного развития пожара на момент прибытия подразделения;
  • t обн время развития пожара с момента его возникновения до момента его обнаружения (2 мин. – при наличии АПС или АУПТ, 2-5 мин. – при наличии круглосуточного дежурства, 5 мин. – во всех остальных случаях);
  • t сооб – время сообщения о пожаре в пожарную охрану (1 мин. – если телефон находится в помещении дежурного, 2 мин. – если телефон в другом помещении);
  • t сб = 1 мин. – время сбора личного состава по тревоге;
  • t сл – время следования пожарного подразделения (2 мин. на 1 км пути );
  • t бр – время боевого развертывания (3 мин. при подаче 1-го ствола, 5 мин. в остальных случаях).

2) Определение расстояния R , пройденного фронтом горения, за время t .

при t св ≤ 10 мин.: R = 0,5 ·V л · t св (м);

при t вв > 10 мин.: R = 0,5 ·V л · 10 + V л · (t вв – 10)= 5 ·V л + V л · (t вв – 10) (м);

при t вв < t * ≤ t лок : R = 5 ·V л + V л · (t вв – 10) + 0,5 ·V л · (t * – t вв ) (м).

  • где t св – время свободного развития,
  • t вв – время на момент введения первых стволов на тушение,
  • t лок – время на момент локализации пожара,
  • t * – время между моментами локализации пожара и введения первых стволов на тушение.

3) Определение площади пожара.

Площадь пожара S п – это площадь проекции зоны горения на горизонтальную или (реже) на вертикальную плоскость. При горении на нескольких этажах за площадь пожара принимают суммарную площадь пожара на каждом этаже.

Периметр пожара Р п – это периметр площади пожара.

Фронт пожара Ф п – это часть периметра пожара в направлении (направлениях) распространения горения.

Для определения формы площади пожара следует вычертить схему объекта в масштабе и от места возникновения пожара отложить в масштабе величину пути R , пройденного огнем во все возможные стороны.

При этом принято выделять три варианта формы площади пожара:

  • круговую (Рис.2);
  • угловую (Рис. 3, 4);
  • прямоугольную (Рис. 5).

При прогнозировании развития пожара следует учитывать, что форма площади пожара может меняться. Так, при достижении фронтом пламени ограждающей конструкции или края площадки, принято считать, что фронт пожара спрямляется и форма площади пожара изменяется (Рис. 6).

а) Площадь пожара при круговой форме развития пожара.

S п = k · p · R 2 (м 2) ,

  • где k = 1 – при круговой форме развития пожара (рис. 2),
  • k = 0,5 – при полукруговой форме развития пожара (рис. 4),
  • k = 0,25 – при угловой форме развития пожара (рис. 3).

б) Площадь пожара при прямоугольной форме развития пожара.

S п = n ·b · R (м 2) ,

  • где n – количество направлений развития пожара,
  • b – ширина помещения.

в) Площадь пожара при комбинированной форме развития пожара (рис 7)

S п = S 1 + S 2 (м 2)

а) Площадь тушения пожара по периметру при круговой форме развития пожара.

S т = k · p · (R 2 – r 2) = k · p ··h т · (2·R – h т) (м 2),

  • где r = R h т ,
  • h т – глубина тушения стволов (для ручных стволов – 5м, для лафетных – 10 м).

б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.

S т = 2 ·h т · (a + b – 2 ·h т ) (м 2)– по всему периметру пожара ,

где а и b – соответственно длина и ширина фронта пожара.

S т = n·b·h т (м 2 ) – по фронту распространяющегося пожара ,

где b и n – соответственно ширина помещения и количество направлений подачи стволов.

5) Определение требуемого расхода воды на тушение пожара.

Q т тр = S п · I тр при S п ≤ S т (л/с) или Q т тр = S т · I тр при S п > S т (л/с)

Интенсивность подачи огнетушащих веществ I тр – это количество огнетушащего вещества, подаваемое за единицу времени на единицу расчетного параметра.

Различают следующие виды интенсивности:

Линейная – когда в качестве расчетного принят линейный параметр: например, фронт или периметр. Единицы измерения – л/с∙м. Линейная интенсивность используется, например, при определении количества стволов на охлаждение горящих и соседних с горящим резервуаров с нефтепродуктами.

Поверхностная – когда в качестве расчетного параметра принята площадь тушения пожара. Единицы измерения – л/с∙м 2 . Поверхностная интенсивность используется в практике пожаротушения наиболее часто, так как для тушения пожаров в большинстве случаев используется вода, которая тушит пожар по поверхности горящих материалов.

Объемная – когда в качестве расчетного параметра принят объем тушения. Единицы измерения – л/с∙м 3 . Объемная интенсивность используется, преимущественно, при объемном тушении пожаров, например, инертными газами.

Требуемая I тр – количество огнетушащего вещества, которое необходимо подавать за единицу времени на единицу расчетного параметра тушения. Определяется требуемая интенсивность на основе расчетов, экспериментов, статистических данных по результатам тушения реальных пожаров и т.д.

Фактическая I ф – количество огнетушащего вещества, которое фактически подано за единицу времени на единицу расчетного параметра тушения.

6) Определение требуемого количества стволов на тушение.

а) N т ст = Q т тр / q т ст – по требуемому расходу воды,

б) N т ст = Р п / Р ст – по периметру пожара,

Р п – часть периметра, на тушение которого вводятся стволы

Р ст = q ст / I тр h т – часть периметра пожара, которая тушится одним стволом. Р = 2 · p ·L (длина окружности), Р = 2 · а + 2 ·b (прямоугольник)

в) N т ст = (m + A ) – в складах со стеллажным хранением (рис. 11) ,

  • где n – количество направлений развития пожара (ввода стволов),
  • m – количество проходов между горящими стеллажами,
  • A – количество проходов между горящим и соседним негорящим стеллажами.

7) Определение требуемого количества отделений для подачи стволов на тушение.

N т отд = N т ст / n ст отд ,

где n ст отд – количество стволов, которое может подать одно отделение.

8) Определение требуемого расхода воды на защиту конструкций.

Q з тр = S з · I з тр (л/с) ,

  • где S з – защищаемая площадь (перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
  • I з тр = (0,3-0,5) ·I тр – интенсивность подачи воды на защиту.

9) Водоотдача кольцевой водопроводной сети рассчитывается по формуле:

Q к сети = ((D/25) V в) 2 [л/с], (40) где,

  • D – диаметр водопроводной сети, [мм];
  • 25 – переводное число из миллиметров в дюймы;
  • V в – скорость движения воды в водопроводе, которая равна:
  • – при напоре водопроводной сети Hв =1,5 [м/с];
  • – при напоре водопроводной сети H>30 м вод.ст. –V в =2 [м/с].

Водоотдача тупиковой водопроводной сети рассчитывается по формуле:

Q т сети = 0,5 Q к сети, [л/с].

10) Определение требуемого количества стволов на защиту конструкций.

N з ст = Q з тр / q з ст ,

Также количество стволов часто определяется без аналитического расчета из тактических соображений, исходя из мест размещения стволов и количества защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в каждое смежное помещение по стволу РС-50.

11) Определение требуемого количества отделений для подачи стволов на защиту конструкций.

N з отд = N з ст / n ст отд

12) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).

N л отд = N л / n л отд , N мц отд = N мц / n мц отд , N вск отд = S вск / S вск отд

13) Определение общего требуемого количества отделений.

N общ отд = N т ст + N з ст + N л отд + N мц отд + N вск отд

На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.

14) Сравнение фактического расхода воды Q ф на тушение, защиту и водоотдачи сети Q вод противопожарного водоснабжения

Q ф = N т ст · q т ст + N з ст · q з ст Q вод

15) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.

На водоисточники устанавливают не всю технику, которая прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного расхода, т.е.

N АЦ = Q тр / 0,8 Q н ,

где Q н – подача насоса, л/с

Такой оптимальный расход проверяют по принятым схемам боевого развертывания, с учетом длинны рукавных линий и расчетного количества стволов. В любом из указанных случаев, если позволяют условия (в частности, насосно-рукавная система), боевые расчеты прибывающих подразделений должны использоваться для работы от уже установленных на водоисточники автомобилей.

Это не только обеспечит использование техники на полную мощность, но и ускорит введение сил и средств на тушение пожара.

В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.

Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади

(не распространяющиеся пожары или условно приводящиеся к ним)

Исходные данные для расчета сил и средств:

  • площадь пожара;
  • интенсивность подачи раствора пенообразователя;
  • интенсивность подачи воды на охлаждение;
  • расчетное время тушения.

При пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на самолетах.

На первом этапе боевых действий производят охлаждение горящих и соседних резервуаров.

1) Требуемое количество стволов на охлаждение горящего резервуара.

N зг ств = Q зг тр / q ств = n π D гор I зг тр / q ств , но не менее 3 х стволов,

I зг тр = 0,8 л/см – требуемая интенсивность для охлаждения горящего резервуара,

I зг тр = 1,2 л/см – требуемая интенсивность для охлаждения горящего резервуара при пожаре в ,

Охлаждение резервуаров W рез ≥ 5000 м 3 и более целесообразно осуществлять лафетными стволами.

2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.

N зс ств = Q зс тр / q ств = n 0,5 π D сос I зс тр / q ств , но не менее 2 х стволов,

I зс тр = 0,3 л/см – требуемая интенсивность для охлаждения соседнего не горящего резервуара,

n – количество горящих или соседних резервуаров соответственно,

D гор , D сос – диаметр горящего или соседнего резервуара соответственно (м),

q ств – производительность одного (л/с),

Q зг тр , Q зс тр – требуемый расход воды на охлаждение (л/с).

3) Требуемое количество ГПС N гпс на тушение горящего резервуара.

N гпс = S п I р-ор тр / q р-ор гпс (шт.),

S п – площадь пожара (м 2),

I р-ор тр – требуемая интенсивность подачи раствора пенообразователя на тушение (л/с∙м 2). При t всп ≤ 28 о C I р-ор тр = 0,08 л/с∙м 2 , при t всп > 28 о C I р-ор тр = 0,05 л/с∙м 2 (см. приложение № 9)

q р-ор гпс производительность ГПС по раствору пенообразователя (л/с).

4) Требуемое количество пенообразователя W по на тушение резервуара.

W по = N гпс q по гпс ∙ 60 ∙ τ р ∙ К з (л),

τ р = 15 минут – расчетное время тушения при подаче ВМП сверху,

τ р = 10 минут – расчетное время тушения при подаче ВМП под слой горючего,

К з = 3 – коэффициент запаса (на три пенные атаки),

q по гпс – производительность ГПС по пенообразователю (л/с).

5) Требуемое количество воды W в т на тушение резервуара.

W в т = N гпс q в гпс ∙ 60 ∙ τ р ∙ К з (л),

q в гпс – производительность ГПС по воде (л/с).

6) Требуемое количество воды W в з на охлаждение резервуаров.

W в з = N з ств q ств τ р ∙ 3600 (л),

N з ств – общее количество стволов на охлаждение резервуаров,

q ств – производительность одного пожарного ствола (л/с),

τ р = 6 часов – расчетное время охлаждения наземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93),

τ р = 3 часа – расчетное время охлаждения подземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93).

7) Общее требуемое количество воды на охлаждение и тушение резервуаров.

W в общ = W в т + W в з (л)

8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.

T = ( H h ) / ( W + u + V ) (ч), где

H – начальная высота слоя горючей жидкости в резервуаре, м;

h – высота слоя донной (подтоварной) воды, м;

W – линейная скорость прогрева горючей жидкости, м/ч (табличное значение);

u – линейная скорость выгорания горючей жидкости, м/ч (табличное значение);

V – линейная скорость понижения уровня вследствие откачки, м/ч (если откачка не производится, то V = 0 ).

Тушение пожаров в помещениях воздушно-механической пеной по объему

При пожарах в помещениях иногда прибегают к тушению пожара объемным способом, т.е. заполняют весь объем воздушно-механической пеной средней кратности (трюмы кораблей, кабельные тоннели, подвальные помещения и т.д.).

При подаче ВМП в объем помещения должно быть не менее двух проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма и избыточного давления воздуха, что способствует лучшему продвижению ВМП в помещении.

1) Определение требуемого количества ГПС для объемного тушения.

N гпс = W пом ·К р / q гпс t н , где

W пом – объем помещения (м 3);

К р = 3 – коэффициент, учитывающий разрушение и потерю пены;

q гпс – расход пены из ГПС (м 3 /мин.);

t н = 10 мин – нормативное время тушения пожара.

2) Определение требуемого количества пенообразователя W по для объемного тушения.

W по = N гпс q по гпс ∙ 60 ∙ τ р ∙ К з (л),

Пропускная способность рукавов

Приложение № 1

Пропускная способность одного прорезиненного рукава длиной 20 метров в зависимости от диаметра

Пропускная способность, л/с

Диаметр рукавов, мм

51 66 77 89 110 150
10,2 17,1 23,3 40,0

Приложение 2

Величины сопротивления одного напорного рукава длиной 20 м

Тип рукавов Диаметр рукавов, мм
51 66 77 89 110 150
Прорезиненные 0,15 0,035 0,015 0,004 0,002 0,00046
Непрорезиненные 0,3 0,077 0,03

Приложение 3

Объем одного рукава длиной 20 м

Приложение № 4

Геометрические характеристики основных типов стальных вертикальных резервуаров (РВС).

№ п/п Тип резервуара Высота резервуара, м Диаметр резервуара, м Площадь зеркала горючего, м 2 Периметр резервуара, м
1 РВС-1000 9 12 120 39
2 РВС-2000 12 15 181 48
3 РВС-3000 12 19 283 60
4 РВС-5000 12 23 408 72
5 РВС-5000 15 21 344 65
6 РВС-10000 12 34 918 107
7 РВС-10000 18 29 637 89
8 РВС-15000 12 40 1250 126
9 РВС-15000 18 34 918 107
10 РВС-20000 12 46 1632 143
11 РВС-20000 18 40 1250 125
12 РВС-30000 18 46 1632 143
13 РВС-50000 18 61 2892 190
14 РВС-100000 18 85,3 5715 268
15 РВС-120000 18 92,3 6691 290

Приложение № 5

Линейные скорости распространения горения при пожарах на объектах.

Наименование объекта Линейная скорость распространения горения, м/мин
Административные здания 1,0…1,5
Библиотеки, архивы, книгохранилища 0,5…1,0
Жилые дома 0,5…0,8
Коридоры и галереи 4,0…5,0
Кабельные сооружения (горение кабелей) 0,8…1,1
Музеи и выставки 1,0…1,5
Типографии 0,5…0,8
Театры и Дворцы культуры (сцены) 1,0…3,0
Сгораемые покрытия цехов большой площади 1,7…3,2
Сгораемые конструкции крыш и чердаков 1,5…2,0
Холодильники 0,5…0,7
Деревообрабатывающие предприятия:
Лесопильные цехи (здания I, II, III СО) 1,0…3,0
То же, здания IV и V степеней огнестойкости 2,0…5,0
Сушилки 2,0…2,5
Заготовительные цеха 1,0…1,5
Производства фанеры 0,8…1,5
Помещения других цехов 0,8…1,0
Лесные массивы (скорость ветра 7…10 м/с, влажность 40 %)
Сосняк до 1,4
Ельник до 4,2
Школы, лечебные учреждения:
Здания I и II степеней огнестойкости 0,6…1,0
Здания III и IV степеней огнестойкости 2,0…3,0
Объекты транспорта:
Гаражи, трамвайные и троллейбусные депо 0,5…1,0
Ремонтные залы ангаров 1,0…1,5
Склады:
Текстильных изделий 0,3…0,4
Бумаги в рулонах 0,2…0,3
Резинотехнических изделий в зданиях 0,4…1,0
То же в штабелях на открытой площадке 1,0…1,2
Каучука 0,6…1,0
Товарно-материальных ценностей 0,5…1,2
Круглого леса в штабелях 0,4…1,0
Пиломатериалов (досок) в штабеля при влажности 16…18 % 2,3
Торфа в штабелях 0,8…1,0
Льноволокна 3,0…5,6
Сельские населенные пункты:
Жилая зона при плотной застройке зданиями V степени огнестойкости, сухой погоде 2,0…2,5
Соломенные крыши зданий 2,0…4,0
Подстилка в животноводческих помещениях 1,5…4,0

Приложение № 6

Интенсивность подачи воды при тушении пожаров, л/(м 2 .с)

1. Здания и сооружения
Административные здания:
I-III степени огнестойкости 0.06
IV степени огнестойкости 0.10
V степени огнестойкости 0.15
подвальные помещения 0.10
чердачные помещения 0.10
Больницы 0.10
2. Жилые дома и подсобные постройки:
I-III степени огнестойкости 0.06
IV степени огнестойкости 0.10
V степени огнестойкости 0.15
подвальные помещения 0.15
чердачные помещения 0.15
3.Животноводческие здания:
I-III степени огнестойкости 0.15
IV степени огнестойкости 0.15
V степени огнестойкости 0.20
4.Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры):
сцена 0.20
зрительный зал 0.15
подсобные помещения 0.15
Мельницы и элеваторы 0.14
Ангары, гаражи, мастерские 0.20
локомотивные, вагонные, трамвайные и троллейбусные депо 0.20
5.Производственные здания участки и цехи:
I-II степени огнестойкости 0.15
III-IV степени огнестойкости 0.20
V степени огнестойкости 0.25
окрасочные цехи 0.20
подвальные помещения 0.30
чердачные помещения 0.15
6. Сгораемые покрытия больших площадей
при тушении снизу внутри здания 0.15
при тушении снаружи со стороны покрытия 0.08
при тушении снаружи при развившемся пожаре 0.15
Строящиеся здания 0.10
Торговые предприятия и склады 0.20
Холодильники 0.10
7. Электростанции и подстанции:
кабельные тоннели и полуэтажи 0.20
машинные залы и котельные помещения 0.20
галереи топливоподачи 0.10
трансформаторы, реакторы, масляные выключатели* 0.10
8. Твердые материалы
Бумага разрыхленная 0.30
Древесина:
балансовая при влажности, %:
40-50 0.20
менее 40 0.50
пиломатериалы в штабелях в пределах одной группы при влажности, %:
8-14 0.45
20-30 0.30
свыше 30 0.20
круглый лес в штабелях в пределах одной группы 0.35
щепа в кучах с влажностью 30-50 % 0.10
Каучук, резина и резинотехнические изделия 0.30
Пластмассы:
термопласты 0.14
реактопласты 0.10
полимерные материалы 0.20
текстолит, карболит, отходы пластмасс, триацетатная пленка 0.30
Хлопок и другие волокнистые материалы:
открытые склады 0.20
закрытые склады 0.30
Целлулоид и изделия из него 0.40
Ядохимикаты и удобрения 0.20

* Подача тонкораспыленной воды.

Тактико-технические показатели приборов подачи пены

Прибор подачи пены Напор у прибора, м Концция р-ра, % Расход, л/с Кратность пены Производ-сть по пене, м куб./мин(л/с) Дальность подачи пены, м
воды ПО р-ра ПО
ПЛСК-20 П 40-60 6 18,8 1,2 20 10 12 50
ПЛСК-20 С 40-60 6 21,62 1,38 23 10 14 50
ПЛСК-60 С 40-60 6 47,0 3,0 50 10 30 50
СВП 40-60 6 5,64 0,36 6 8 3 28
СВП(Э)-2 40-60 6 3,76 0,24 4 8 2 15
СВП(Э)-4 40-60 6 7,52 0,48 8 8 4 18
СВП-8(Э) 40-60 6 15,04 0,96 16 8 8 20
ГПС-200 40-60 6 1,88 0,12 2 80-100 12 (200) 6-8
ГПС-600 40-60 6 5,64 0,36 6 80-100 36 (600) 10
ГПС-2000 40-60 6 18,8 1,2 20 80-100 120 (2000) 12

Линейная скорость выгорания и прогрева углеводородных жидкостей

Наименование горючей жидкости Линейная скорость выгорания, м/ч Линейная скорость прогрева горючего, м/ч
Бензин До 0,30 До 0,10
Керосин До 0,25 До 0,10
Газовый конденсат До 0,30 До 0,30
Дизельное топливо из газового конденсата До 0,25 До 0,15
Смесь нефти и газового конденсата До 0,20 До 0,40
Дизельное топливо До 0,20 До 0,08
Нефть До 0,15 До 0,40
Мазут До 0,10 До 0,30

Примечание: с увеличением скорости ветра до 8-10 м/с скорость выгорания горючей жидкости возрастает на 30-50 %. Сырая нефть и мазут, содержащие эмульсионную воду, могут выгорать с большей скоростью, чем указано в таблице.

Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках

(информационное письмо ГУГПС от 19.05.00 № 20/2.3/1863)

Таблица 2.1. Нормативные интенсивности подачи пены средней кратности для тушения пожаров нефти и нефтепродуктов в резервуарах

Примечание: Для нефти с примесями газового конденсата, а также для нефтепродуктов, полученных из газового конденсата, необходимо определение нормативной интенсивности в соответствии с действующими методиками.

Таблица 2.2. Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах*

№ п/п Вид нефтепродукта Нормативная интенсивность подачи раствора пенообразователя, л м 2 с’
Фторсодержащие пенообразователи “не пленкообразующие” Фторсинтетические “пленкообразующие” пенообразователи Фторпротеиновые “пленкообразующие” пенообразователи
на поверхность в слой на поверхность в слой на поверхность в слой
1 Нефть и нефтепродукты с Т всп 28° С и ниже 0,08 0,07 0,10 0,07 0,10
2 Нефть и нефтепродукты с Т всп более 28 °С 0,06 0,05 0,08 0,05 0,08
3 Стабильный газовый конденсат 0,12 0,10 0,14 0,10 0,14

Основные показатели, характеризующих тактические возможности пожарных подразделений

Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:

    ;
  • возможную площадь тушения воздушно-механической пеной;
  • возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
  • предельное расстояние по подаче огнетушащих средств.

Расчеты приведены согласно Справочник руководителя тушения пожара (РТП). Иванников В.П., Клюс П.П., 1987

Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник

1) Определение формула времени работы водяных стволов от автоцистерны:

t раб = (V ц – N p ·V p) / N ст ·Q ст ·60 (мин.) ,

N р = k · L / 20 = 1,2· L / 20 (шт.) ,

  • где: t раб – время работы стволов, мин.;
  • V ц – объем воды в цистерне , л;
  • N р – число рукавов в магистральной и рабочих линиях, шт.;
  • V р – объем воды в одном рукаве, л (см. прилож.);
  • N ст – число водяных стволов, шт.;
  • Q ст – расход воды из стволов, л/с (см. прилож.);
  • k – коэффициент, учитывающий неровности местности (k = 1,2 – стандартное значение),
  • L – расстояние от места пожара до пожарного автомобиля (м).

Дополнительно обращаем Ваше внимание, что в справочнике РТП Тактические возможности пожарных подразделений. Теребнев В.В., 2004 в разделе 17.1 приводится, точно такая же формула но с коэффициентом 0,9: Tраб = (0,9Vц – Np ·Vp) / Nст ·Qст ·60 (мин.)

2) Определение формула возможной площади тушения водой S Т от автоцистерны:

S Т = (V ц – N p ·V p) / J тр · t расч · 60 (м 2) ,

  • где: J тр – требуемая интенсивность подачи воды на тушение, л/с·м 2 (см. прилож.);
  • t расч = 10 мин. – расчетное время тушения.

3) Определение формула времени работы приборов подачи пены от автоцистерны:

t раб = (V р-ра – N p ·V p) / N гпс ·Q гпс ·60 (мин.) ,

  • где: V р-ра – объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;
  • N гпс – число ГПС (СВП), шт;
  • Q гпс – расход раствора пенообразователя из ГПС (СВП), л/с (см. прилож.).

Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.

К В = 100–С / С = 100–6 / 6 = 94 / 6 = 15,7 – количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).

Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:

К ф = V ц / V по ,

  • где V ц – объем воды в цистерне пожарной машины, л;
  • V по – объем пенообразоователя в баке, л.

если К ф < К в, то V р-ра = V ц / К в + V ц (л) – вода расходуется полностью, а часть пенообразователя остается.

если К ф > К в, то V р-ра = V по ·К в + V по (л) – пенообразователь расходуется полностью, а часть воды остается.

4) Определение возможной формула площади тушения ЛВЖ и ГЖ воздушно-механической пеной:

S т = (V р-ра – N p ·V p) / J тр · t расч · 60 (м 2),

  • где: S т – площадь тушения, м 2 ;
  • J тр – требуемая интенсивность подачи раствора ПО на тушение, л/с·м 2 ;

При t всп ≤ 28 о C J тр = 0,08 л/с∙м 2 , при t всп > 28 о C J тр = 0,05 л/с∙м 2 .

t расч = 10 мин. – расчетное время тушения.

5) Определение формула объема воздушно-механической пены , получаемого от АЦ:

V п = V р-ра ·К (л),

  • где: V п – объем пены, л;
  • К – кратность пены;

6) Определение возможного объема тушения воздушно-механической пеной:

V т = V п / К з (л, м 3),

  • где: V т – объем тушения пожара;
  • К з = 2,5–3,5 – коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.

Примеры решения задач

Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав d 77 мм, а рабочие линии состоят из двух рукавов d 51 мм от АЦ-40(131)137А.

Решение:

t = (V ц – N р V р) / N ст ·Q ст · 60 =2400 – (1· 90 + 4 · 40) / 2 · 3,5 · 60 = 4,8 мин .

Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.

Решение:

К ф = V ц / V по = 2350/170 = 13,8.

К ф = 13,8 < К в = 15,7 для 6-ти % раствора

V р-ра = V ц / К в + V ц = 2350/15,7 + 2350 » 2500 л.

t = (V р-ра – N p ·V p) / N гпс ·Q гпс ·60 = (2500 – 2 · 90)/1 · 6 · 60 = 6,4 мин .

Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).

Решение:

1) Определяем объем водного раствора пенообразователя:

К ф = V ц / V по = 4000/200 = 20.

К ф = 20 > К в = 15,7 для 6-ти % раствора,

V р-ра = V по ·К в + V по = 200·15,7 + 200 = 3140 + 200 = 3340 л.

2) Определяем возможную площадь тушения:

S т = V р-ра / J тр · t расч ·60 = 3340/0,08 ·10 · 60 = 69,6 м 2 .

Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).

Решение:

V п = V р-ра · К = 2500 · 100 = 250000 л = 250 м 3 .

Тогда объем тушения (локализации):

V т = V п /К з = 250/3 = 83 м 3 .

Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник

Рис. 1. Схема подачи воды в перекачку

Расстояние в рукавах (штуках) Расстояние в метрах
1) Определение предельного расстояния от места пожара до головного пожарного автомобиля N гол ( L гол ).
N мм ( L мм ), работающими в перекачку (длины ступени перекачки).
N ст
4) Определение общего количества пожарных машин для перекачки N авт
5) Определение фактического расстояния от места пожара до головного пожарного автомобиля N ф гол ( L ф гол ).
  • H н = 90÷100 м – напор на насосе АЦ,
  • H разв = 10 м – потери напора в разветвлении и рабочих рукавных линиях,
  • H ст = 35÷40 м – напор перед стволом,
  • H вх ≥ 10 м – напор на входе в насос следующей ступени перекачки,
  • Z м – наибольшая высота подъема (+) или спуска (–) местности (м),
  • Z ст – наибольшая высота подъема (+) или спуска (–) стволов (м),
  • S – сопротивление одного пожарного рукава,
  • Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
  • L – расстояние от водоисточника до места пожара (м),
  • N рук – расстояние от водоисточника до места пожара в рукавах (шт.).

Пример: Для тушения пожара необходимо подать три ствола Б с диаметром насадка 13 мм, максимальная высота подъема стволов 10 м. Ближайшим водоисточником является пруд, расположенный на расстоянии 1,5 км от места пожара, подъем местности равномерный и составляет 12 м. Определить количество автоцистерн АЦ−40(130) для перекачки воды на тушение пожара.

Решение:

1) Принимаем способ перекачки из насоса в насос по одной магистральной линии.

2) Определяем предельное расстояние от места пожара до головного пожарного автомобиля в рукавах.

N ГОЛ = / SQ 2 = / 0,015 · 10,5 2 = 21,1 = 21.

3) Определяем предельное расстояние между пожарными автомобилями, работающими в перекачку, в рукавах.

N МР = / SQ 2 = / 0,015 · 10,5 2 = 41,1 = 41.

4) Определяем расстояние от водоисточника до места пожара с учетом рельефа местности.

N Р = 1,2 · L/20 = 1,2 · 1500 / 20 = 90 рукавов.

5) Определяем число ступеней перекачки

N СТУП = (N Р − N ГОЛ) / N МР = (90 − 21) / 41 = 2 ступени

6) Определяем количество пожарных автомобилей для перекачки.

N АЦ = N СТУП + 1 = 2 + 1 = 3 автоцистерны

7) Определяем фактическое расстояние до головного пожарного автомобиля с учетом установки его ближе к месту пожара.

N ГОЛ ф = N Р − N СТУП · N МР = 90 − 2 · 41 = 8 рукавов.

Следовательно, головной автомобиль можно приблизить к месту пожара.

Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара

Если застройка сгораемая, а водоисточники находятся на очень боль­шом расстоянии, то время, затраченное на прокладку рукавных линий, будет слишком большим, а пожар скоротечным. В таком случае лучше подвозить воду автоцистернами с параллельной организацией перекачки. В каждом конкретном случае необходимо решать тактическую задачу, при­нимая во внимание возможные масштабы и длительность пожара, рас­стояние до водоисточников, скорость сосредоточения пожарных автомо­билей, рукавных автомобилей и другие особенности гарнизона.

Формула расхода воды АЦ

(мин.) – время расхода воды АЦ на месте тушения пожара;

  • L – расстояние от места пожара до водоисточника (км);
  • 1 – минимальное количество АЦ в резерве (может быть увеличено);
  • V движ – средняя скорость движения АЦ (км/ч);
  • W цис – объем воды в АЦ (л);
  • Q п – средняя подача воды насосом, заправляющим АЦ, или расход воды из пожарной колонки, установленной на пожарный гидрант (л/с);
  • N пр – число приборов подачи воды к месту тушения пожара (шт.);
  • Q пр – общий расход воды из приборов подачи воды от АЦ (л/с).

Рис. 2. Схема подачи воды способом подвоза пожарными автомобилями.

Подвоз воды должен быть бесперебойным. Следует иметь в виду, что у водоисточников необходимо (в обязательном порядке) создавать пункт заправки автоцистерн водой.

Пример. Определить количество автоцистерн АЦ−40(130)63б для подвоза воды из пруда, расположенного в 2 км от места пожара, если для тушения необходимо подать три ствола Б с диаметром насадка 13 мм. Заправку автоцистерн осуществляют АЦ−40(130)63б, средняя скорость движения автоцистерн 30 км/ч.

Решение:

1) Определяем время следования АЦ к месту пожара или обратно.

t СЛ = L · 60 / V ДВИЖ = 2 · 60 / 30 = 4 мин.

2) Определяем время заправки автоцистерн.

t ЗАП = V Ц /Q Н · 60 = 2350 / 40 · 60 = 1 мин.

3)Определяем время расхода воды на месте пожара.

t РАСХ = V Ц / N СТ · Q СТ · 60 = 2350 / 3 · 3,5 · 60 = 4 мин.

4) Определяем количество автоцистерн для подвоза воды к месту пожара.

N АЦ = [(2t СЛ + t ЗАП) / t РАСХ ] + 1 = [(2 · 4 + 1) / 4] + 1 = 4 автоцистерны.

Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем

При наличии заболоченных или густо заросших берегов, а так же при значительном расстоянии до поверхности воды (более 6,5-7 метров), превышающем глубину всасывания пожарного насоса (высокий крутой берег, колодцы и т.п.) необходимо применять для забора воды гидроэлеватор Г-600 и его модификации.

1) Определим требуемое количество воды V СИСТ , необходимое для запуска гидроэлеваторной системы:

V СИСТ = N Р ·V Р ·K ,

N Р = 1,2·(L + Z Ф ) / 20 ,

  • гдеN Р − число рукавов в гидроэлеваторной системе (шт.);
  • V Р − объем одного рукава длиной 20 м (л);
  • K − коэффициент, зависящий от количества гидроэлеваторов в системе, работающей от одной пожарной машины (К = 2 – 1 Г-600, K =1,5 – 2 Г-600);
  • L – расстояние от АЦ до водоисточника (м);
  • Z Ф – фактическая высота подъема воды (м).

Определив требуемое количество воды для запуска гидроэлеваторной системы, сравнивают полученный результат с запасом воды, находящимся в пожарной автоцистерне, и выявляют возможность запуска данной системы в работу.

2) Определим возможность совместной работы насоса АЦ с гидроэлеваторной системой.

И = Q СИСТ / Q Н ,

Q СИСТ = N Г (Q 1 + Q 2 ) ,

  • гдеИ – коэффициент использования насоса;
  • Q СИСТ − расход воды гидроэлеваторной системой (л/с);
  • Q Н − подача насоса пожарного автомобиля (л/с);
  • N Г − число гидроэлеваторов в системе (шт.);
  • Q 1 = 9,1 л/с − рабочий расход воды одного гидроэлеватора;
  • Q 2 = 10 л/с − подача одного гидроэлеватора.

При И < 1 система будет работать, при И = 0,65-0,7 будет наиболее устойчивая совместная и насоса.

Следует иметь в виду, что при заборе воды с больших глубин (18-20м) необходимо создавать на насосе напор 100 м. В этих условиях рабочий расход воды в системах будет повышаться, а расход насоса – понижаться против нормального и может оказаться, что сумма рабочего и эжектируемого расходов превысит расход насоса. В этих условиях система работать не будет.

3) Определим условную высоту подъема воды Z УСЛ для случая, когда длина рукавных линий ø77 мм превышает 30 м:

Z УСЛ = Z Ф + N Р · h Р (м),

гдеN Р − число рукавов (шт.);

h Р − дополнительные потери напора в одном рукаве на участке линии свыше 30 м:

h Р = 7 м при Q = 10,5 л/с , h Р = 4 м при Q = 7 л/с , h Р = 2 м при Q = 3,5 л/с .

Z Ф фактическая высота от уровня воды до оси насоса или горловины цистерны (м).

4) Определим напор на насосе АЦ:

При заборе воды одним гидроэлеватором Г−600 и обеспечении работы определенного числа водяных стволов напор на насосе (если длина прорезиненных рукавов диаметром 77 мм до гидроэлеватора не превышает 30 м) определяют по табл. 1.

Определив условную высоту подъема воды, находим напор на насосе таким же образом по табл. 1 .

5) Определим предельное расстояние L ПР по подаче огнетушащих средств:

L ПР = (Н Н – (Н Р ± Z М ± Z СТ ) / SQ 2 ) · 20 (м) ,

  • где H Н напор на насосе пожарного автомобиля, м;
  • Н Р напор у разветвления (принимается равным: Н СТ + 10) , м;
  • Z М высота подъема (+) или спуска (−) местности, м;
  • Z СТ − высота подъема (+) или спуска (−) стволов, м;
  • S − сопротивление одного рукава магистральной линии
  • Q − суммарный расход из стволов, подсоединенных к одной из двух наиболее нагруженной магистральной линии, л/с.

Таблица 1.

Определение напора на насосе при заборе воды гидроэлеватором Г−600 и работе стволов по соответствующим схемам подачи воды на тушение пожара.

95 70 50 18 105 80 58 20 – 90 66 22 – 102 75 24 – – 85 26 – – 97

6) Определим общее количество рукавов в выбранной схеме:

N Р = N Р.СИСТ + N МРЛ,

  • где N Р.СИСТ − число рукавов гидроэлеваторной системы, шт;
  • N МРЛ − число рукавов магистральной рукавной линии, шт.

Примеры решения задач с использование гидроэлеваторных систем

Пример. Для тушения пожара необходимо подать два ствола соответственно в первый и второй этажи жилого дома. Расстояние от места пожара до автоцистерны АЦ−40(130)63б, установленной на водоисточник, 240 м, подъем местности составляет 10 м. Подъезд автоцистерны до водоисточника возможен на расстояние 50 м, высота подъема воды составляет 10 м. Определить возможность забора воды автоцистерной и подачи ее к стволам на тушение пожара.

Решение:

Рис. 3 Схема забора воды с помощью гидроэлеватора Г-600

2) Определяем число рукавов, проложенных к гидроэлеватору Г−600 с учетом неровности местности.

N Р = 1,2· (L + Z Ф) / 20 = 1,2 · (50 + 10) / 20 = 3,6 = 4

Принимаем четыре рукава от АЦ до Г−600 и четыре рукава от Г−600 до АЦ.

3) Определяем количество воды, необходимое для запуска гидроэлеваторной системы.

V СИСТ = N Р ·V Р ·K = 8· 90 · 2 = 1440 л < V Ц = 2350 л

Следовательно воды для запуска гидроэлеваторной системы достаточно.

4) Определяем возможность совместной работы гидроэлеваторной системы и насоса автоцистерны.

И = Q СИСТ / Q Н = N Г (Q 1 + Q 2) / Q Н = 1·(9,1 + 10) / 40 = 0,47 < 1

Работа гидроэлеваторной системы и насоса автоцистерны будет устойчивой.

5) Определяем необходимый напор на насосе для забора воды из водоема с помощью гидроэлеватора Г−600.

Поскольку длина рукавов к Г−600 превышает 30 м, сначала определяем условную высоту подъема воды: Z

Исходя из опыта, статистики МЧС России, к сожалению, понятно, что как бы внимательно собственники зданий/сооружений, руководство компаний/организаций, государственных учреждений; а также арендаторы не относились к обеспечению безопасности на своих объектах, но исключить возможность возникновения пожара на 100 % просто невозможно.

Где и зачем нужны

Если же ЧП произошло, то, конечно, наличие АПС, , работоспособных, укомплектованных ПК в большинстве случаев поможет локализовать, а затем ликвидировать очаг пожара еще на ранних стадиях, не позволив ему распространиться в смежные помещения, вышележащие этажи; чему могут помешать только правильно установленные в строительных/технологических проемах противопожарные двери, люки, окна заводского изготовления, сертифицированные по требованиям ПБ.

Но, это не всегда удается по объективным причинам – в зависимости от горючей загрузки, опасности веществ/материалов, наличествующих в здании, обращающихся/транспортирующихся в аппаратах, установках технологического оборудования, хранящихся в складах сырья и товарной продукции, конкретной ситуации.

В таком случае от распространения огня по всей территории усадьбы жилого/загородного дома, промпредприятия, населенного пункта от небольшого дачного поселка до районного центра, города; да еще если по «закону подлости» в это время дует сильный ветер, что, по статистике, далеко не редкость в таких чрезвычайных, сложных ситуациях, может реально спасти только следующее:

  • , которые не позволят разлетающимся пылающим, искрящим головешкам, сильному тепловому воздействию от горящих зданий, строений, сооружений воспламенить соседние строения.
  • Местные подразделения МЧС, а также ведомственные, частные пожарные формирования, имеющие специальную технику для борьбы с огнем, члены ДПД предприятий, организаций, учреждений, где в наличии есть мотопомпы/станции пожаротушения.
  • Противопожарное наружное водоснабжение, которое единственное может обеспечить подачу того огромного количества, суммарного объема воды, практически каждый раз необходимого как для , так и для дальнейшей поливки всех мест его возникновения, развития, во избежание повторных возгораний.

Без такого водоснабжения справиться с огнем не под силу никаким противопожарным формированиям, пусть даже имеющим, в тех же мегаполисах, огромный штат специальной техники. Ведь объем возимой в ее емкостях воды не так уж велик, исчисляется всего лишь в минутах интенсивной работы при подаче стволов на тушение пожара; а время для заправки/пополнения запасов, установки дополнительных насосных станций для перекачки издалека, как правило, чрезвычайно критично в условиях распространяющегося, набирающего силу пожара.

В городах – это, конечно, наружные сети противопожарного водопровода, как правило, проложенного под землей для защиты от промерзания в зимний период, с установленными на его магистралях, боковых отводах, вплоть до дальних, окраинных, в том числе тупиковых линий; пожарных гидрантов – технических устройств, установленных в специальных колодцах для обслуживания, которые предназначены для подключения к ним пожарных автомашин, передвижных насосных станций.

В более мелких населенных пунктах – районных центрах в сельской, степной, таежной местности, поселках, деревнях, на территориях отдельно стоящих, размещенных вдали от городской черты производств, промышленных предприятий, различных объектов как гражданского, так оборонного назначения – это пирсы на реках, озерах, прудах, для установки специальной техники с насосами; искусственные водоемы – пожарные резервуары с неприкосновенным запасом, специально спроектированные, созданные для борьбы с огнем. Они бывают разных видов, типов как по конструкции, так и по материалам, способам возведения.

Важно! Несмотря на широко распространенное мнение, бытующее даже среди инженерно-технического персонала предприятий/организаций, бурение в безводных районах любых подземных скважин даже с гигантским постоянным дебитом воды ни в коем случае не заменит этим устройство пожарных водоемов/резервуаров. Против этого категорически возражают нормы/правила ПБ, установленные государством.

Причина проста и понятна – слишком ненадежным источником они являются. Подача воды из-под земли может снизиться до неприемлемых значений по расходу для целей пожаротушения или вообще прекратиться в любой момент; что вовсе не редкость при интенсивном, максимально технически возможном отборе на протяжении срока, необходимого для полной ликвидации пожара, его последствий.

А вот заполнить с их помощью и поддерживать необходимый запас воды в пожарных резервуарах – это правильное решение, грамотно обоснованное как с технической, так и с экономической точки зрения. Ведь, говоря простым языком, возить воду за тридевять земель – не самое умное решение в таких ситуациях.

Наземные и подземные

До сих пор в городах России можно встретить водонапорные башни, которые когда-то использовались, в том числе как пожарные резервуары для тушения очагов огня, заправки техники. Сегодня большей частью они если не снесены, то используются как сооружения общественного назначения, будучи реконструированными, переоборудованными под предприятия общественного питания, клубы, музеи.

Попадающие в этот список пожарные резервуары могут являться как частью общей инженерной системы водоснабжения защищаемого объекта, тогда они соединены трубопроводами с насосными станциями, а далее с внутренним водопроводом, установками АУПТ автоматического/ручного запуска; или служат основным или дополнительным источником для забора воды в случае возникновения ЧП передвижной спецтехникой подразделений МЧС России, ведомственных частей или ДПД.

Определение: согласно того же официального документа, пожарным резервуаром, обычно металлическим/железобетонным, считается инженерное емкостное сооружение. Его единственное назначение – хранение запаса воды для тушения.

Конкретные требования норм (п. 4.1. СП 8.13130.2009) звучат следующим образом – наружное водоснабжение для борьбы с пожарами обязательно должно иметься на территории всех поселений и предприятий/организаций.

При этом допустимо использовать его из искусственных источников – водоемов, резервуаров для следующих объектов защиты:

  • Поселений с числом жителей меньше 5 тыс. человек.
  • Расположенных за чертой поселений, отдельно стоящих зданий при отсутствии возможности устройства водопроводной сети, обеспечивающей расход для наружного тушения возможного пожара.
  • Любых зданий, когда расход не превышает 10 л/с.
  • Малоэтажных зданий, когда площадь не превышает допустимого пожарного отсека для них по нормам.

Расход воды, необходимый для защищаемых объектов, сильно разнится – от 5 л/с для сельских поселений, до 35 л/с, если высота зданий достигает 12 этажей, а площадь застройки превышает 50 тыс. кв. м.; что должно быть учтено сотрудниками проектных организаций при расчете суммарного объема пожарных резервуаров, который должен также:

  • Распределяться минимум в двух емкостях по 50% от общего объема в каждой.
  • Обеспечивать тушение для всех сельских поселений, отдельно расположенных зданий предприятий, в том числе складов пиломатериалов закрытого типа – не меньше 3 часов.

За исключением:

  • Зданий I, II СО, категорий Г, Д – 2 часа.
  • Складов, площадок хранения лесоматериалов открытого типа – 5 часов.

После окончания тушения, а, следовательно, значительного уменьшения запаса воды, вплоть до опорожнения пожарных резервуаров, нормами установлен максимальный восстановительный срок:

  • Для промпредприятий с категориями А, Б, В, а также населенных пунктов, если они на их территории – не больше 1 суток.
  • Категории Г, Д – 1,5 суток.
  • Для сельскохозяйственных предприятий, населенных пунктов – 3 суток.

Установлен следующий радиус обслуживания для пожарных резервуаров на территориях поселений, предприятий, а также расстояния (противопожарные разрывы) до зданий:

  • Если резервуары оборудованы пожарными помпами – от 100 до 150 м в зависимости от вида, назначения зданий.
  • Оборудованные насосами/станциями пожаротушения – до 200 м.
  • От I, II категории огнестойкости – не ближе 10 м.
  • От III–V – 30 м.

Насосные станции пожарных резервуаров допустимо размещать в обслуживаемых ими зданиях промпредприятия, отделяя противопожарными преградами с ПО REI 120, с отдельным выходом наружу.

При разработке рабочей документации следует руководствоваться принципом – доступностью для подразделений МЧС, членов ДПД в любое время суток, что должно обеспечиваться как планировкой размещения на территории, подъезда, так и конструктивным, техническим исполнением.

При проектировании пожарных надземных/подземных резервуаров используются следующие нормы и правила ПБ:

  • Основная информация по (в измененной редакции).
  • ), регламентирующий создание сетей на территории.
  • Во всем нужен расчет. Пожарные резервуары слишком важны для безопасности людей, сохранения зданий, сооружения, оборудования, имущества, товароматериальных ценностей в них; чтобы ограничиться неглубоко закопанной на территории поселка или отдельно стоящего предприятия одной железнодорожной емкостью, бывшей в употреблении, и с гордым видом сообщить об этом в ходе проверки инспектору ГПН. Вряд ли его реакция обрадует администрацию поселения или руководство предприятия.

3.1. Расчет количества средств пожаротушения резервуара.

В резервуарных парках СНН, как правило, следует предусматривать пожаротушение воздушно-механической пеной средней кратности. Могут предусматриваться порошковые составы, вода аэрозольного распыла и др. средства и методы тушения, обоснованные результатами научно-исследовательских работ и согласованные в установленном порядке.

Тушение пожара на СНН может осуществляться установками:

стационарными автоматического пожаротушения, стационарными неавтоматического пожаротушения и передвижными. Выбор установок пожаротушения следует предусматривать в зависимости от вместимости СНН, объемов устанавливаемых единичных резервуаров, расположения СНН, организации пожарной охраны на СНН или возможности сосредоточения необходимого количества пожарной техники из близ-расположенных в радиусе 3 км пожарных частей.

Стационарная установка автоматического пенного пожаротушения состоит:

Из насосной станции;

Пунктов для приготовления раствора пенообразователя;

Резервуаров для воды и пенообразователя;

Генераторов пены, установленных на резервуарах в верхней части;

Дозирующей аппаратуры;

Трубопроводов для подачи раствора пенообразователя к генераторам пены;

Средств автоматизации.

Стационарная установка неавтоматического пенного пожаротушения на наземных резервуарах состоит из тех же элементов, что и стационарная автоматическая, за исключением средств автоматизации.

Передвижная установка – пожарные автомобили и мотопомпа, а также средства для подачи пены. Подача воды предусматривается из сети наружного водопровода, противопожарных емкостей или естественных водоисточников.

Выбор установки пенного пожаротушения определяется на основании технико-экономических расчетов.

Расчет средств пожаротушения производится по интенсивности подачи химической пены, исходя из времени тушения пожара. Интенсивность подачи средств пожаротушения – это их количество в единицу площади (л/с ∙ м 2).

Продолжительность подачи, т.е. расчетное время тушения пожара – это время подачи средств пожаротушения до полной его ликвидации при заданной интенсивности подачи.

Для определения потребности воды на образование химической пены используется коэффициент кратности, показывающий отношения объема пены к объему воды, ушедшей на ее образование (кратность для химической пены равна: к = 5).

Водопроводные и пенопроводные линии системы пожаротушения рассчитываются по расходу воды, скорость движения которой не должна превышать v = 1,5 м/с.

Длина пенопроводов должна быть в пределах l = 40 – 80 м.

Количество воды, находящейся в запасе, принимается не менее 5-ти кратного расхода воды на тушение пожара и охлаждения резервуаров.

Определение площади зеркала нефтепродукта в РВС – 10000 м 3

где Д – диаметр резервуара, м

Подставляя значение, получим

Fp = ------ = 6,38 м 2

Определение количества подаваемой хим.пены для тушения пожара в резервуаре по формуле:

Qn = q n уд ∙ Fp ∙ τ ∙ К з.в.

Где Qn – общее количество пены на тушение пожара, м 3 ;

q n уд – интенсивность подачи пены, л/с ∙ м 2 (для дизтоплива

принимаем q n уд = 0,2 л/с ∙ м 2)

Fp - площадь зеркала нефтепродукта в резервуаре, м 2 , 60 –

перевод мин. в сек.; 0,001 – перевод объема из л в м 3 ;

К з.в. – коэффициент запаса пенообразующих веществ

(принимаем = 1,25)

τ - время тушения, час. (принимаем = 25)

подставляя значения, получим:

Qn = 60/1000 ∙ 0,2 ∙ 638(Fp) ∙ 25 ∙ 1,25 = 241 м 3

Определение количества воды для образования пены:

Где К – коэффициент кратности для химической пены

(принимаем = 5)

Qв = 241/5 = 48 м 3

Определение расхода воды на охлаждение горящего и соседних резервуаров (воду необходимо расходовать на охлаждение стенок горящего резервуара и соседних находящихся от горящего на расстоянии менее 2 диаметров резервуара; охлаждение производится водяными струями из пожарных рукавов).

Определение расхода воды на охлаждение горящего резервуара:

Q в.г.р. = 3600/1000 ∙ Lp ∙ q уд.в.г. ∙ τ ох.г.

Где 3600 – перевод часов в сек., 1000 – перевод л. в м 3

Lp - длина окружности резервуаров, м

(L = π ∙ Д = 3,14 ∙ 28,5 = 89,5 м)

q уд.в.г – удельный расход воды на охлаждение стенок

горящего резервуара, л/м ∙ с (принимаем = 0,5)

τ ох.г. - время охлаждения горящего резервуара, час.

(принимаем = 10 часов)

подставляя значения, получим:

Q в.г.р. = 3600/1000 ∙ Lp ∙ Np ∙ q уд.в.с. ∙ τ ох.с.

Где Np – количество соседних резервуаров на расстоянии менее

2-х диаметров (в каждом случае принимается N = 3)

τ - время охлаждения соседнего резервуара, час.

Объем пожарного запаса воды (W пр) определяем из условия хранения воды необходимого на:

Пенотушение в течение 15 минут (0,4 часа) (п.3 приложение 3 СНиП 2.11.03-93)

W 1 = 0,4 х 18,8 х 3,6 = 27,072 м 3

Орошения водой (охлаждения) в течение 6 часов (п.8.16 СНиП 2.11.03-93)

W 2 = 6 х (38,13 + 21,46) х 3,6 = 1287,144 м 3

Забора воды из гидрантов в течение 3 часов (п.2.24 СНиП 2.04.02-84*).

W 3 = 3 х 0,25х(38,13 + 21,46 + 18,8) х 3,6 = 211,653 м 3

W пр = W 1 + W 2 + W 3 = 27,072 + 1287,144 + 211,653 = 1525,869 ≈ 1526 м 3 .

Принимаем к установке два резервуара РВС-1000, объемом 1000 м 3 каждый. Обогрев резервуаров осуществляется теплофикационной водой. Температура воды в резервуарах поддерживается плюс 10 град.С.

Нормативное время восстановления пожарного объема в резервуарах принимается 24 часа (п.2.25 СНиП 2.04.02-84*) и осуществляется по проектируемому кольцевому хозяйственно-питьевому водопроводу из расчета подачи не менее

1526 / 24 = 63,58 м 3 /час = 17,66 л/с (по 8,67 л/с в каждый резервуар).

Пропускная способность трубопровода, с учетом снижения потребления воды на хозяйственно-питьевые нужды предприятия до 70 % (примечание 2 п.2.25 СНиП 2.04.02-84*), составит:

63,58 + 0,7 х 2,285 = 65,18 м 3 /ч = 18,01 л/сек

2.4 Подбор пожарных насосов

Насос для подачи воды из резервуаров в кольцевой противопожарный водопровод подбираем по данным:

Производительность насоса Q = 99,7 л/с ≈ 360 м 3 /ч;

Напор перед лафетными стволами и пеногенераторами – номинальное 60 м (рабочее 40-80 м);

Диаметр всасывающих линий – 400 мм

Диаметр напорных линий – 250 мм

Длина трубопровода от НС до наиболее удаленного потребителя – 0,8 км;

(по кольцу, при возможном отключении одного участка на ремонт – 1,1 км)

Н = 60 + 1,2 х L х 1000i = 60 + 1,2 х 0,8 х 19,9 = 79,1 ≈80 м;

Н = 60 + 1,2 х L х 1000i = 60 + 1,2 х 1,1 х 19,9 ≈ 86 м .

Принимаем к установке три насосных агрегата (2 рабочих; 1 резервный) марки 1Д200-90 (D K = 270 мм) с электродвигателем 5АМ250М2У3, мощностью 90 кВт. Рабочий интервал насоса по производительности от 140 до 250 м 3 /ч. Необходимый нам максимальный расход 360 м 3 /ч обеспечат два насоса при параллельной работе с напором 92 м. вод. ст.

2.5 Подбор циркуляционных насосов

С целью недопущения замерзания воды в кольцевом трубопроводе обеспечивается её циркуляция с возвращением в резервуары с температурой не ниже плюс 5 град С.

Производительность насосов и толщину теплоизоляции трубопроводов надземного кольцевого противопожарного водопровода принимаем методом подбора из условия недопущения образования ледяной корки в трубе и из расчета недопущения снижения температуры воды в трубопроводе ниже плюс 5 град.С по методике изложенной в СН 510-78.



Определим температуру воды в начале напорного водовода, если образование ледяной корки в трубе не допускается. Радиус стальной трубы водовода r = 0,125 м. Длина кольцевого водовода l = 1600 м. Расход воды G =10000 кг/ч. Теплоизоляция трубы – скорлупы из пенополиуретана ППУ толщиной d и = 0,06 м; коэффициент теплопроводности ППУ l и = 0,028 Вт/(м×°С). Минимальная среднесуточная температура воздуха t в = - 57° С. Скорость ветра v = 7,7 м/с. Скорость воды в трубопроводе Ду 250 мм при заданном расходе v в = 0,057 м/с.

При заданной температуре воды в конце расчетного участка трубопровода t к = 5 град.С и толщине теплоизоляции d и, температура воды в начале расчетного участка t н должна быть не менее

t н = (t к ‑ t в)e j з + t в ,

где t в - минимальная среднесуточная температура наружного воздуха, °С;

е - экспонент (показательная функция)

a в - коэффициент теплоотдачи от воды к внутренним стенкам трубы, Вт/м 2 ×°С), определяемый по формуле

a н - коэффициент теплоотдачи от поверхности трубопровода и наружному воздуху, Bт/(м 2 ×°C), определяемый в зависимости от наружного радиуса (с изоляцией) и скорости ветра

v - скорость ветра, м/с.

По вышеприведенным формулам определяем значения

а в = 1415 х 0,057 0,8 / (2х0,125) 0,2 = 188,74 Вт/(м×°С)

R в = 1 / (2х2,14х188,74 х 0,125) = 0,006746 м×°С/Вт

а н = 37 х 7,7 0,8 / 0,2 = 231,076 Вт/(м 2 ×°С)



R н = 1 /2х3,14 (0,125 +0,1)х 231,076 + 1 /2х3,14х0,028 х ln[(0,125 + 0,06)/ 0,125] = 2,232 м×°С/Вт

φ 3 = 1600 / 1,16х10000х (0,06746 + 2,232) = 0,0616

t н = (5-(-57)) е 0,07 + (-57) = 8,94 ° С

Таким образом начальной температуры в 10 град. С достаточно чтобы при циркуляционном расходе 10 м 3 /час и толщине изоляции из ППУ 60 мм температура в конце кольцевого трубопровода понизилась не ниже + 5 град.С.

Принимем к установке насосы марки Иртыш-ЦМЛ 50/130-1,5/2 производительностью 10 м 3 /час, напором 21 м, в количестве 3 шт (1 рабочий, 2 резервных), согласно п 7.3 СН 510-78.

3 Эксплуатационный раздел

3.1 Описание схемы пожаротушения