Ферменты их структура. Привет студент. · не расходуются в процессе реакции

Ферме́нты , или энзи́мы (от лат.Fermentum - закваска) - обычно белковые молекулыилимолекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции вживыхсистемах.Реагентыв реакции, катализируемой ферментами, называютсясубстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазыфосфорилируеттолько фосфорилазу).

Ферментативная активность может регулироваться активаторамииингибиторами(активаторы - повышают, ингибиторы - понижают).

Белковые ферментысинтезируются нарибосомах, а РНК - в ядре.

Термины «фермент» и «энзим» давно используют как синонимы(первый в основном в русской и немецкой научной литературе, второй - в англо- и франкоязычной).

Наука о ферментах называется энзимологией , а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтомпри обсуждении механизмовпищеварения.

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, акрахмалпревращается всахарпод действием слюны. Однако механизм этих явлений был неизвестен .

В XIX в. Луи Пастер, изучая превращениеуглеводоввэтиловый спиртпод действиемдрожжей, пришёл к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках.

Более ста лет назад термины фермент и энзим отражали различные точки зрения в теоретическом споре Л. Пастерас одной стороны, иМ. БертлоиЮ. Либиха- с другой, о природе спиртового брожения. Собственноферментами (от лат.fermentum - закваска) называли «организованные ферменты» (то есть сами живые микроорганизмы), а термин энзим (от греч.ἐν- - в- и ζύμη - дрожжи, закваска) предложен в1876 годуВ. Кюне для «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин,амилаза). Через два года после смерти Л. Пастера в1897 годуЭ. Бухнер опубликовалработу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В1907 годуза эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент (уреаза) был выделен в 1926 годуДж. Самнером. В течение последующих 10 лет было выделено ещё несколько ферментов, и белковая природа ферментов была окончательно доказана.

Каталитическая активность РНК впервые была обнаружена в 1980-е годы у пре-рРНК Томасом Чеком, изучавшимсплайсингРНК уинфузорииTetrahymena thermophila . Рибозимомоказался участок молекулы пре-рРНК Tetrahymena, кодируемыйинтрономвнехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов . Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществорганизма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активациипроцесса.Химическое равновесиепри этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокаяспецифичность-константа связываниянекоторых субстратов с белком может достигать 10 −10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка телёнка, створаживает около 10 6 молекул казеиногена молока за 10 мин при температуре 37 °C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз. См. также Каталитически совершенный фермент

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например,пепсинимеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

    КФ 1: Оксидоредуктазы , катализирующие окисление или восстановление. Пример: каталаза,алкогольдегидрогеназа.

    КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстратана другую. Среди трансфераз особо выделяюткиназы, переносящие фосфатную группу, как правило, с молекулыАТФ.

    КФ 3: Гидролазы , катализирующие гидролизхимических связей. Пример:эстеразы,пепсин,трипсин,амилаза,липопротеинлипаза.

    КФ 4: Лиазы , катализирующие разрыв химических связей без гидролизас образованиемдвойной связив одном из продуктов.

    КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата.

    КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счёт гидролиза АТФ. Пример:ДНК-полимераза.

Оксиредуктазы – это ферменты, катализирующие реакции окисления и восстановления, т.е. перенос электронов от донора к акцептору. Окисление представляет собой отнятие атомов водорода от субстрата, а восстановление это присоединение атомов водорода к акцептору.

К оксидоредуктазам относятся: дегидразы,оксидазы,оксигеназы, гидроксилазы, пероксидазы, каталазы. Например, ферменталкогольдегидрогеназакатализирует реакцию превращение спирта в альдегид.

Оксиредуктазы, переносящие атом водорода или электроны непосредственно на атомы кислорода, называются аэробными дегидрогеназами (оксидазами), тогда как оксидоредуктазы, переносящие атом водорода или электроны от одного компонентадыхательной цепи ферментов к другому, называются анаэробными дегидрогеназами. Распространённым вариантом окислительно-восстановительного процесса в клетках является окисление атомов водорода субстрата при участии оксиредуктаз. Оксидоредуктазы являются двухкомпонентными ферментами, у которых один и тот же кофермент может связываться с различными апоферментами. Например, многие оксидоредуктазы в качестве кофермента содержат НАД и НАДФ. В конце многочисленного класса оксиредуктаз (на 11 позиции) находятся ферменты типа каталаз и пероксидаз. Из всего количества белков пероксисом клеток до 40 процентов приходится на каталазу. Каталаза и пероксидаза расщепляют пероксид водорода в следующих реакциях: Н2О2 + Н2О2 = О2 + 2Н2О H2O2 + HO – R – OH = O=R=O + 2H2O Из данных уравнений сразу становятся видны как аналогия, так и существенное отличие между этими реакциями и ферментами. В этом смыслекаталазное расщепление пероксида водорода представляет собой особый случай пероксидазной реакции, когда пероксид водорода служит и в качестве субстрата, и акцептора в первой реакции.

Трансфера́зы - отдельный класс ферментов, катализирующих перенос функциональных групп и молекулярных остатков от одной молекулы к другой. Широко распространены в растительных и животных организмах, участвуют в превращениях углеводов, липидов, нуклеиновых и аминокислот.

Реакции, катализируемые трансферазами, в общем случае выглядят так:

A-X + B ↔ A + B-X.

Молекула A здесь выступает в качестве донора группы атомов (X ), а молекулаB является акцептором группы. Часто в качестве донора в подобных реакциях переноса выступает один изкоферментов. Многие из катализируемых трансферазами реакций являются обратимыми. Систематические названия ферментов класса образуются по схеме:

«донор:акцептор + группа + трансфераза ».

Или же используются чуть более общие названия, когда в название фермента включается имя либо донора, либо акцептора группы:

«донор + группа + трансфераза » или «акцептор + группа + трансфераза ».

Например, аспартатаминотрансферазакатализирует переносаминной группыс молекулыглутаминовой кислоты,катехол-О-метилтрансферазаосуществляет переносметильной группыS-аденозилметионина на бензольное кольцо различныхкатехоламинов, агистон-ацетилтрансферазапереносит ацетильную группу с ацетил-кофермента А нагистонв процессе активациитранскрипции.

Кроме того ферменты 7 подгруппытрансфераз, переносящие остаток фосфорной кислоты, используя в качестве донора фосфатной группыАТФ, часто называют также киназами; аминотрансферазы (6 подгруппа) часто называюттрансаминазами

Гидролазы (КФ3) - это классферментов, катализирующийгидролизковалентной связи. Общий вид реакции, катализируемой гидролазой выглядит следующим образом:

A–B + H 2 O → A–OH + B–H

Систематическое название гидролаз включает название расщепляемого субстрата с последующим добавлением -гидролаза . Однако, как правило в тривиальном названии слово гидролаза опускается и остаётся только суффикс «-аза».

Важнейшие представители

Эстеразы: нуклеаза, фосфодиэстераза, липаза, фосфотаза;

Гликозидазы: амилаза, лизоцим и др;

Протеазы: трипсин, химотрипсин, эластаза, тромбин, ренин и др;

Кислотный ангидрид-гидролаза (хеликаза, ГТФаза)

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию - присоединение по двойным связям.

Лиа́зы - отдельный класс ферментов, катализирующих реакции негидролитического и неокислительного разрыва различных химических связей (C-C , C-O , C-N , C-S и других) субстрата, обратимые реакции образования и разрыва двойных связей, сопровождающиеся отщеплением или присоединением групп атомов по её месту, а также образованием циклических структур.

В общем виде названия ферментов образуются по схеме «субстрат + лиаза». Однако чаще в названии учитывают подкласс фермента. Лиазы отличаются от других ферментов тем, что в катализируемых реакциях в одном направлении участвуют два субстрата, а в обратной реакции только один. В названии фермента присутствуют слова "декарбоксилаза" и "альдолаза" или "лиаза" (пируват-декарбоксилаза, оксалат-декарбоксилаза, оксалоацетат-декарбоксилаза, треонин-альдолаза, фенилсерин-альдолаза, изоцитрат-лиаза, аланин-лиаза, АТФ-цитрат-лиаза и др.), а для ферментов, катализирующих реакции отщепления воды от субстрата - "дегидратаза" (карбонат-дегидратаза, цитрат-дегидратаза, серин-дегидратаза и др.). В тех случаях, когда обнаружена только обратная реакция, или это направление в реакциях более существенно, в названии ферментов пристутствует слово "синтаза" (малат-синтаза, 2-изопропилмалат-синтаза, цитрат-синтаза, гидроксиметилглутарил-CoA-синтаза и др.).

Примеры: гистидиндекарбоксилаза,фумаратгидратаза.

Изомеразы - ферменты,катализирующиеструктурные превращенияизомеров(рацемизация или эпимеризация). Изомеразы катализируютреакции, подобные следующей: A → B, где B является изомером A.

В названии фермента присутствует слово "рацемаза " (аланин-рацемаза, метионин-рацемаза, гидроксипролин-рацемаза, лактат-рацемаза и др.), "эпимераза " (альдоза-1-эпимераза, рибулозофосфат-4-эпимераза, УДФ-глюкуронат-4-эпимераза и др.), "изомераза " (рибозофосфат-изомераза, ксилозоизомераза, глюкозаминфосфат-изомераза, эноил-СоА изомераза и др.), "мутаза " (фосфоглицерат-мутаза, метиласпартат-мутаза, фосфоглюкомутазаи др.).

Лигаза (лат.ligāre - сшивать, соединять) - фермент,катализирующийсоединение двух молекул с образованием новой химической связи (лигирование ). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.

Лигазы относятся к классу ферментов EC 6.

В молекулярной биологии лигазы подкласса 6.5 классифицируют на РНК-лигазы и ДНК-лигазы.

ДНК-лигазы

ДНК-лигаза, осуществляющая репарациюДНК

ДНК-лигазы - ферменты(EC 6.5.1.1),катализирующиековалентное сшиваниецепейДНКв дуплексе прирепликации,репарацииирекомбинации. Они образуют фосфодиэфирные мостики между 5"-фосфорильной и 3"-гидроксильной группами соседнихдезоксинуклеотидовв местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергиюгидролизапирофосфорильной связиАТФ. Один из самых распространённых коммерчески доступных ферментов - ДНК-лигазабактериофагаТ4.

ДНК-лигазы млекопитающих

У млекопитающих классифицируют три основных типа ДНК-лигаз.

    ДНК-лигаза I лигирует фрагменты Оказакив ходерепликацииотстающей цепи ДНК и участвует в эксцизионной репарации .

    ДНК-лигаза III в комплексе с белком XRCC1участвует вэксцизионной репарациии в рекомбинации.

    ДНК-лигаза IV в комплексе с XRCC4катализирует окончательный этап негомологичного соединения (non-homologous end joining - NHEJ) двунитевых разрывов ДНК. Также требуется для V(D)J рекомбинации геновиммуноглобулинов.

Ранее выделяли ещё один тип лигаз - ДНК-лигазу II, которая позднее была признана артефактом выделения белков, а именно продуктом протеолиза ДНК-лигазы III .

Соглашения о наименовании ферментов

Обычно ферменты именуют по типу катализируемой реакции, добавляя суффикс -аза к названию субстрата(например , лактаза- фермент, участвующий в превращениилактозы). Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название. Такие ферменты различают по другим свойствам, например, по оптимальномуpH(щелочная фосфатаза) или локализации в клетке (мембраннаяАТФаза).

Структура и механизм действия ферментов

Активность ферментов определяется их трёхмерной структурой .

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс.Третичная структурабелков разрушается при нагревании или воздействии некоторых химических веществ.

Активный центр ферментов

Изучение механизма химической реакции, катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп егомолекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данныйсубстрат, а также химической природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - «активный центр» - уникальная комбинация остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа .

В активном центре условно выделяют :

    каталитический центр - непосредственно химически взаимодействующий с субстратом;

    связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторовили ионов металлов.

Фермент, соединяясь с субстратом:

    очищает субстрат от водяной «шубы»

    располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом

    подготавливает к реакции (например, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:

В отсутствие фермента:

В присутствии фермента:

  • АФ+В = АВФ

    АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеровчасто сопрягаются с реакциейгидролизаАТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидазатрипсинразрывает пептидную связь только послеаргининаилилизина, если за ними не следует пролин, апепсингораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.

В 1890 г. Эмиль Фишерпредположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата . Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.

Модель индуцированного соответствия

В 1958 г. Дениел Кошландпредложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации - присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой. Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Ещё один распространенный тип посттранляционных модификаций - расщепление полипептидной цепи. Например, химотрипсин(протеаза, участвующая впищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется вподжелудочной железе. Неактивная форма транспортируется вжелудок, где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавинилигем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большинство кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Регуляция работы ферментов

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Ингибирование конечным продуктом

Метаболический путь - цепочка последовательных ферментативных реакций. Часто конечный продукт метаболического пути является ингибитором фермента, ускоряющего первую из реакций данного метаболического пути. Если конечного продукта слишком много, то он действует как ингибитор для самого первого фермента, а если после этого конечного продукта стало слишком мало, то первый фермент опять активируется. Таким образом, ингибирование конечным продуктом по принципу отрицательной обратной связи- важный способ поддержаниягомеостаза(относительного постоянства условий внутренней среды организма).

Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме - давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.

Множественные формы ферментов

Множественные формы ферментов можно разделить на две категории:

    Изоферменты

    Собственно множественные формы (истинные)

Изоферменты - это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию. Виды изоферментов:

    Органные - ферменты гликолизав печени и мышцах.

    Клеточные - малатдегидрогеназацитоплазматическая и митохондриальная (ферменты разные, но катализируют одну и ту же реакцию).

    Гибридные - ферменты с четвертичной структурой, образуются в результате нековалентного связывания отдельных субъединиц (лактатдегидрогеназа- 4 субъединицы 2 типов).

    Мутантные - образуются в результате единичной мутации гена.

    Аллоферменты - кодируются разными аллелями одного и того же гена.

Собственно множественные формы (истинные) - это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомахони подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Изоферменты разные на генетическом уровне и отличаются от первичной последовательности, а истинные множественные формы становятся разными на посттрансляционном уровне.

Медицинское значение

Связь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».

Если происходит мутация в гене, кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина.Фенилкетонуриясвязана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

Практическое использование

Ферменты широко используются в народном хозяйстве - пищевой, текстильной промышленности, в фармакологии и медицине. Большинство лекарств влияют на течение ферментативных процессов в организме, запуская или приостанавливая те или иные реакции.

Ещё шире область использования ферментов в научных исследованиях и в медицине.

Тема: «СВОЙСТВА И КЛАССИФИКАЦИЯ ФЕРМЕНТОВ. ВЛИЯНИЕ ТЕМПЕРАТУРЫ И рН СРЕДЫ НА АКТИВНОСТЬ ФЕРМЕНТОВ. СПЕЦИФИЧНОСТЬ ДЕЙСТВИЯ ФЕРМЕНТОВ. ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ»

1. Химическая природа ферментов. Значение ферментов для жизнедеятельности организма.

2. Основные свойства ферментов. Влияние концентрации фермента и субстрата, температуры и рН среды на скорость ферментативной реакции. Олигодинамичность и обратимость действия ферментов.

3. Специфичность действия ферментов (абсолютная, относительная и стереохимическая). Примеры.

4. Важнейший признак, положенный в основу классификации ферментов. Понятие о кодовом номере фермента. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Тип и общее уравнение катализируемых реакций, принципы формирования подклассов.

5. Номенклатура ферментов (понятие о систематическом и рабочем (рекомендуемом) названиях ферментов, их использование).

6. Определение активности ферментов. Аналитические методы, применяемые для определения активности. Единицы общей, удельной, молекулярной активности ферментов, их использование. Формула для расчёта общей активности фермента в сыворотке крови.

Раздел 7.1

Химическая природа ферментов. Значение ферментов для жизнедеятельности организма.

7.1.1. Протекание процессов обмена веществ в организме определяется действием многочисленных ферментов — биологических катализаторов белковой природы. Они ускоряют химические реакции и сами при этом не расходуются. Термин «фермент» происходит от латинского слова fermentum — закваска. Наряду с этим понятием в литературе используется равноценный термин «энзим» (en zyme - в дрожжах) греческого происхождения. Отсюда раздел биохимии, изучающий ферменты, получил название «энзимология».

Энзимология составляет основу познания на молекулярном уровне важнейших проблем физиологии и патологии человека. Переваривание пищевых веществ и их использование для выработки энергии, образование структурных и функциональных компонентов тканей, сокращение мышц, передача электрических сигналов по нервным волокнам, восприятие света глазом, свертывание крови — каждый из этих физиологических механизмов имеет в основе каталитическое действие определенных ферментов. Было показано, что многочисленные заболевания непосредственно нарушением ферментативного катализа; определение активности ферментов в крови и других тканях даёт ценные сведения для медицинской диагностики; ферменты или их ингибиторы могут применяться как лекарственные вещества. Таким образом, знание важнейших особенностей ферментов и катализируемых ими реакций необходимо при рациональном подходе к изучению заболеваний человека, их диагностике и лечению.

7.1.2. Вещества, превращения которых катализируют ферменты, называются субстратами . Фермент, соединяясь с субстратом, образует фермент-субстратный комплекс (рисунок 7.1).

Рисунок 7.1. Образование фермент-субстратного комплекса в ходе катализируемой реакции.

Образование этого комплекса способствует снижению энергетического барьера, который нужно преодолеть молекуле субстрата для вступления в реакцию (рисунок 7.2). По завершении реакции фермент-субстратный комплекс распадается на продукт (продукты) и фермент. Фермент по окончании реакции возвращается в своё исходное состояние и может взаимодействовать с новой молекулой субстрата.

Рисунок 7.2. Влияние фермента на энергетический барьер реакции. Ферменты, действуя как катализаторы, снижают энергию активации, которая требуется для того, чтобы могла произойти реакция.

7.1.3. Для ферментов характерны свойства, присущие всем белкам . В частности, молекулы ферментов, как и других белков, построены из α-аминокислот, соединённых пептидными связями. Поэтому растворы ферментов дают положительную биуретовую реакцию , а их гидролизаты - положительную нингидриновую реакцию . Нативные свойства и функции ферментов определяются наличием определённой пространственной структуры (конформации) их полипептидной цепи. Изменение этой структуры в результате тепловой денатурации приводит к потере каталитических свойств. Наличие у ферментов высокой молекулярной массы обусловливает их неспособность к диализу , а присутствие в молекулах заряженных функциональных групп - подвижность в электрическом поле . Как и другие белки, ферменты образуют коллоидные растворы, из которых могут осаждаться ацетоном, спиртом, сульфатом аммония - веществами, способствующими разрушению гидратной оболочки и нейтрализации электрического заряда.

Раздел 7.2

Основные свойства ферментов. Олигодинамичность и обратимость действия ферментов. Влияние концентрации фермента и субстрата, температуры и рН среды на скорость ферментативной реакции.

7.2.1. Белковая природа ферментов обусловливает появление у них ряда свойств, в целом нехарактерных для неорганических катализаторов: олигодинамичность, специфичность, зависимость скорости реакции от температуры, рН среды, концентрации фермента и субстрата, присутствия активаторов и ингибиторов.

Под олигодинамичностью ферментов понимают высокую эффективность действия в очень малых количествах. Такая высокая эффективность объясняется тем, что молекулы ферментов в процессе своей каталитической деятельности непрерывно регенерируют. Типичная молекула фермента может регенерировать миллионы раз в минуту. Надо сказать, что и неорганические катализаторы также способны ускорять превращение такого количества веществ, которое во много раз превышает их собственную массу. Но ни один неорганический катализатор не может сравниться с ферментами по эффективности действия.

Примером может служить фермент реннин, вырабатываемый слизистой оболочкой желудка жвачных животных. Одна молекула его за 10 минут при 37°С способна вызывать коагуляцию (створаживание) порядка миллиона молекул казеиногена молока.

Другой пример высокой эффективности ферментов даёт каталаза. Одна молекула этого фермента при 0°С расщепляет за секунду около 50 000 молекул пероксида водорода:

2 Н2 О2 2 Н2 О + О2

Действие каталазы на пероксид водорода заключается в изменении величины энергии активации этой реакции приблизительно от 75 кДж/моль без катализатора до 21 кДж/моль в присутствии фермента. Если же в качестве катализатора этой реакции используется коллоидная платина, то энергия активации составляет всего 50 кДж/моль.

7.2.2. При изучении влияния какого-либо фактора на скорость ферментативной реакции все прочие факторы должны оставаться неизменными и по возможности иметь оптимальное значение.

Мерой скорости ферментативных реакций служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Изменение скорости проводят на начальной стадии реакции, когда продукт ещё практически отсутствует, и обратная реакция не идёт. Кроме того, на начальной стадии реакции концентрация субстрата соответствует его исходному количеству.

7.2.3. Зависимость скорости ферментативной реакции (V ) от концентрации фермента [Е] (рисунок 7.3). При высокой концентрации субстрата (многократно превышающей концентрацию фермента) и при постоянстве других факторовскорость ферментативной реакции пропорциональна концентрации фермента. Поэтому зная скорость реакции, катализируемой ферментом, можно сделать вывод о его количестве в исследуемом материале.

Рисунок 7.3. Зависимость скорости ферментативной реакции от концентрации фермента

7.2.4. Зависимость скорости реакции от концентрации субстрата [S] . График зависимости имеет вид гиперболы (рисунок 7.4). При постоянной концентрации фермента скорость катализируемой реакции возрастает с увеличением концентрации субстрата до максимальной величины Vmax, после чего остаётся постоянной. Это следует объяснить тем, что при высоких концентрациях субстрата все активные центры молекул фермента оказываются связанными с молекулами субстрата. Любое избыточное количество субстрата может соединиться с ферментом лишь после того, как образуется продукт реакции и освободится активный центр.

Рисунок 7.4. Зависимость скорости ферментативной реакции от концентрации субстрата.

Зависимость скорости реакции от концентрации субстрата может быть выражена уравнением Михаэлиса — Ментен:

,

где V — скорость реакции при концентрации субстрата [S] , Vmax —максимальная скорость и KM —константа Михаэлиса.

Константа Михаэлиса равна концентрации субстрата, при которой скорость реакции составляет половину максимальной. Определение KM и Vmax имеет важное практическое значение, так как позволяет количественно описать большинство ферментативных реакций, включая реакции с участием двух и более субстратов. Различные химические вещества, изменяющие активность ферментов, по-разному воздействуют на величины Vmax и KM .

7.2.5. Зависимость скорости реакции от t - температуры, при которой протекает реакция (рисунок 7.5), имеет сложный характер. Значение температуры, при котором скорость реакции максимальна, представляет собой температурный оптимум фермента. Температурный оптимум большинства ферментов организма человека приблизительно равен 40°С. Для большинства ферментов оптимальная температура равна или выше тойц температуры, при которой находятся клетки.

Рисунок 7.5. Зависимость скорости ферментативной реакции от температуры.

При более низких температурах (0° — 40°С) скорость реакции увеличивается с ростом температуры. При повышении температуры на 10°С скорость ферментативной реакции удваивается (температурный коэффициент Q10 равен 2). Повышение скорости реакции объясняется увеличением кинетической энергии молекул. При дальнейшем повышении температуры происходит разрыв связей, поддерживающих вторичную и третичную структуру фермента, то есть тепловая денатурация. Это сопровождается постепенной потерей каталитической активности.

7.2.6. Зависимость скорости реакции от рН среды (рисунок 7.6). При постоянной температуре фермент работает наиболее эффективно в узком интервале рН. Значение рН, при котором скорость реакции максимальна, представляет собой оптимум рН фермента. У большинства ферментов организма человека оптимум рН находится в пределах рН 6 - 8, но есть ферменты, которые активны при значениях рН, лежащих за пределами этого интервала (например, пепсин, наиболее активный при рН 1,5 - 2,5).

Изменение рН как в кислую, так и в щелочную сторону от оптимума приводит к изменению степени ионизации кислых и основных групп аминокислот, входящих в состав фермента (например, СООН-группы аспартата и глутамата, NН2 -группы лизина и т.д.). Это вызывает изменение конформации фермента, в результате чего изменяется пространственная структура активного центра и снижение его сродства к субстрату. Кроме того, при экстремальных значениях рН происходит денатурация фермента и его инактивация.

Рисунок 7.6. Зависимость скорости ферментативной реакции от рН среды.

Следует отметить, что свойственный ферменту оптимум рН не всегда совпадает с рН его непосредственного внутриклеточного окружения. Это позволяет предположить, что среда, в которой находится фермент, в какой-то мере регулирует его активность.

7.2.7. Зависимость скорости реакции от присутствия активаторов и ингибиторов . Активаторы повышают скорость ферментативной реакции. Ингибиторы понижают скорость ферментативной реакции.

В качестве активаторов ферментов могут выступать неорганические ионы. Предполагают, что эти ионы заставляют молекулы фермента или субстрата принять конформацию, способствующую образованию фермент-субстратного комплекса. Тем самым увеличивается вероятность взаимодействия фермента и субстрата, а следовательно и скорость реакции, катализируемой ферментом. Так, например, активность амилазы слюны повышается в присутствии хлорид-ионов.

Раздел 7.3

Специфичность действия ферментов (абсолютная, относительная и стереохимическая).

7.3.1. Важным свойством, отличающим ферменты от неорганических катализаторов, является специфичность действия . Как известно, структура активного центра фермента комплементарна структуре его субстрата. Поэтому фермент из всех имеющихся в клетке веществ выбирает и присоединяет только свой субстрат. Для ферментов характерна специфичность не только по отношению к субстрату, но и в отношении пути превращения субстрата.

У ферментов различают абсолютную, относительную и стереохимическую специфичность.

7.3.2. Абсолютная специфичность - избирательная способность фермента катализировать только единственное из возможных превращений одного субстрата. Это можно объяснить конформационной и электростатической комплементарностью молекул субстрата и фермента.

Например, фермент аргиназа катализирует только гидролиз аминокислоты аргинина, фермент уреаза - только расщепление мочевины и не действуют на другие субстраты.

7.3.3. Относительная специфичность - избирательная способность фермента катализировать однотипные превращения сходных по строению субстратов.

Такие ферменты оказывают воздействие на одинаковые функциональные группы или на один и тот же тип связей в молекулах субстратов. Так, например, разные гидролитические ферменты действуют на определённый тип связей:

  • амилаза - на гликозидные связи;
  • пепсин и трипсин - на пептидные связи;
  • липаза и фосфолипаза - на сложноэфирные связи.

Действие этих ферментов распространяется на большое число субстратов, что позволяет организму обойтись малым количеством пищеварительных ферментов - иначе их потребовалось бы намного больше.

7.3.4. Стереохимическая (оптическая) специфичность - избирательная способность фермента катализировать превращение только одного из возможных пространственных изомеров субстрата.

Так, большинство ферментов млекопитающих катализирует превращение толькл L-изомеров аминокислот, но не D-изомеров. ферменты, участвующие в обмене моносахаридов, наоборот, катализируют превращение только D-, но не L-фосфосахаров. Гликозидазы специфичны не только к моносахаридному фрагменту, но и характеру гликозидной связи. Например, α-амилаза расщепляет α-1,4-гликозидные связи в молекуле крахмала, но не действует на α-1,2-гликозидные связи в молекуле сахарозы.

Раздел 7.4

Основные принципы, положенные в основу современной классификации и номенклатуры ферментов.


7.4.1. В настоящее время известно более двух тысяч химических реакций, катализируемых ферментами, и число это непрерывно возрастает. Чтобы ориентироваться в таком множестве превращений. возникла настоятельная необходимость в систематизированной классификации и номенклатуре, при помощи которой любой фермент можно было бы точно идентифицировать. Номенклатура, которой пользовались до середины XX века, была весьма далека от совершенства. Исследователи, открывая новый фермент, давали ему название по своему усмотрению, что неизбежно вело к путанице и всевозможным противоречиям. Некоторые названия оказались ошибочными, другие ничего не говорили о природе катализируемой реакции. Учёные разных школ часто употребляли разные названия для одного и того же фермента или, наоборот, одно и то же название для нескольких разных ферментов.

Было решено разработать рациональную международную классификацию и номенклатуру ферментов, которой могли бы пользоваться биохимики всех стран. С этой целью при Международном союзе биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology, IUВMB) была создана Комиссия по ферментам, предложившая в 1964 году основные принципы такой классификации и номенклатуры. Она постоянно совершенствуется и дополняется, в настоящее время действует уже шестая редакция этой номенклатуры (1992 год), к которой ежегодно выходят дополнения.

7.4.2. В основу классификации положен важнейший признак, по которому один фермент отличается от другого — это катализируемая им реакция. Число типов химических реакций сравнительно невелико, что позволило разделить все известные в настоящее время ферменты на 6 важнейших классов, в зависимости от типа катализируемой реакции. Такими классами являются:

  • оксидоредуктазы (окислительно-восстановительные реакции);
  • трансферазы (перенос функциональных групп);
  • гидролазы (реакции расщепления с участием воды);
  • лиазы (разрыв связей без участия воды);
  • изомеразы (изомерные превращения);
  • лигазы (синтез с затратой молекул АТФ).

7.4.3. Ферменты каждого класса делят на подклассы, руководствуясь строением субстратов. В подклассы объединяют ферменты, действующие на сходно построенные субстраты. Подклассы разбивают на подподклассы, в которых ещё строже уточняют структуру химических групп, отличающих субстраты друг от друга. Внутри подподклассов перечисляют индивидуальные ферменты. Все подразделения классификации имеют свои номера. Таким образом, любой фермент получает свой уникальный кодовый номер, состоящий из четырёх чисел, разделённых точками. Первое число обозначает класс, второе - подкласс, третье - подподкласс, четвёртое - номер фермента в пределах подподкласса. Например, фермент α-амилаза, расщепляющая крахмал, обозначается как 3.2.1.1, где:
3 — тип реакции (гидролиз);
2 — тип связи в субстрате (гликозидная);
1 — разновидность связи (О-гликозидная);
1 — номер фермента в подподклассе

Вышеописанный десятичный способ нумерации имеет одно важное преимущество: он позволяет обойти главное неудобство сквозной нумерации ферментов, а именно: необходимость при включении в список вновь открытого фермента изменять номера всех последующих. Новый фермент может быть помещён в конце соответствующего подподкласса без нарушения всей остальной нумерации. Точно так же при выделении новых классов, подклассов и подподклассов их можно добавлять без нарушения порядка нумерации ранее установленных подразделений. Если после получения новой информации возникает необходимость изменить номера некоторым ферментам, прежние номера не присваивают новым ферментам, чтобы избежать недоразумений.

Говоря о классификации ферментов, следует также отметить, что ферменты классифицируются не как индивидуальные вещества, а как катализаторы определённых химических превращений. Ферменты, выделенные из разных биологических источников и катализирующие идентичные реакции, могут существенно отличаться по своей первичной структуре. Тем не менее в классификационном списке все они фигурируют под одним и тем же кодовым номером.

Итак, знание кодового номера фермента позволяет:

  • устранить неоднозначности, если разные исследователи используют одно и то же название для различных ферментов;
  • сделать поиск информации в литературных базах данных более эффективным;
  • получить в других базах данных дополнительную информацию о последовательности аминокислот, пространственной структуре фермента, генах, кодирующих ферментные белки.

аздел 7.5

Понятие о систематическом и рабочем названии фермента, их использование.

7.5.1. Система классификации, разработанная Комиссией по ферментам, включает также и вновь созданную номенклатуру ферментов, которая строится по специальным принципам. Согласно рекомендациям IUBMB, ферменты получают два рода названий: систематическое и рабочее (рекомендуемое).

7.5.2. Систематическое название составляется из двух частей. Первая часть содержит название субстрата или субстратов, часто — наименование кофермента, вторая часть указывает на природу катализируемой реакции и включает название класса, к которому относится данный фермент. При необходимости приводится дополнительная информация о реакции в скобках после второй части названия. Систематическое название присваивается только тем ферментам, каталитическое действие которых полностью изучено.

Например, систематическое название α-амилазы — 1,4-α-D-глюкан-глюканогидролаза . Конечно, такое название очень неудобно для запоминания и произнесения. Поэтому наряду с систематическими Комиссия по ферментам IUBMB даёт рекомендует использовать рабочие (упрощённые) названия ферментов.

7.5.3. Рабочее название фермента должно быть достаточно коротким для употребления. В качестве рабочего названия в ряде случаев может быть использовано тривиальное название, если оно не является ошибочным или двусмысленным. В других случаях оно строится на тех же общих принципах, что и систематическое название, но с минимальной детализацией. Конкретные примеры систематических и рабочих названий ферментов приводятся в следующем разделе данной темы курса. В научных публикациях при первом упоминании о ферменте принято указывать его систематическое название и кодовый номер, а в дальнейшем пользоваться его рабочим названием.

7.5.4. Основные правила построения систематических и рабочих названий разных классов ферментов:

Оксидоредуктазы


Систематическое название
ферментов этого класса строится по схеме донор: акцептор - оксидоредуктаза. Согласно тривиальной номенклатуре, оксидоредуктазы, отщепляющие атомы водорода или электроны и переносящие их на любой акцептор, кроме кислорода, называются дегидрогеназами. Оксидоредуктазы, использующие кислород в качестве акцептора атомов водорода или электронов, называются оксидазами. Некоторые ферменты, которым свойственно преимущественно восстанавливающее действие, носят названиередуктаз. Все перечисленные наименования могут быть использованы для построения рабочего названия оксидоредуктаз.

Трансферазы


Систематическое название
ферментов, ускоряющих такие реакции, составляют по форме донор:акцептор (транспортируемая группа) трансфераза. В рабочем названии обычно указывается только один специфический субстрат или продукт наряду с названием транспортируемой группировки.

Гидролазы


Систематическое название
составляется по форме субстрат-гидролаза. У гидролаз, специфически отщепляющих определённую группу, эта группа может быть указана в виде префикса. Рабочее название чаще всего составляется из названия гидролизуемого субстрата с добавлением окончания -аза. Следует, однако, отметить, что вследствие достаточно сложного и зачастую до конца не выявленного характера специфичности многих гидролаз не всегда удаётся дать им систематическое название. В этих случаях рекомендовано использовать эмпирические названия, присвоенные им при первом описании. Так, не имеют систематического названия такие ферменты, как пепсин, папаин, тромбин.

Лиазы


Систематическое название
ферментов строится по схеме: субстрат-отщепляемая группа-лиаза. Чтобы уточнить, какая группа отщепляется, используются префиксы "карбокси-", "аммиак", "гидро-" и т.д. В качестве рабочих названий ферментов сохраняются тривиальные названия типа "декарбоксилаза", "альдолаза", "дегидратаза", "десульфгидраза". Лиазы делятся на подклассы в зависимости от характера разрываемых связей

Изомеразы



Систематическое название
ферментов включает название субстрата и слово изомераза, которому предшествует указание типа реакции изомеризации. Рабочие названия подобны (с некоторыми упрощениями) систематическим названиям.

Лигазы


Систематическое название
образуется из названий соединяемых субстратов в сочетании со словомлигаза. В скобках указывается продукт, образующийся в результате гидролиза нуклеозидтрифосфата (например, АДФ или АМФ). Рабочее название ферментов этого класса составляется, как правило, из названия продукта реакции в сочетании со словом синтетаза.

Рекомендация. Знакомясь в последующем с различными ферментативными реакциями, всегда анализируйте сущность изменений, происходящих в субстратах, и пытайтесь определить по крайней мере класс фермента, катализирующего реакцию. Анализируйте также названия ферментов и соотносите их с процессами, происходящими в реакциях. Это облегчит запоминание названий ферментов и катализируемых ими превращение и позволит больше времени уделить уяснению биологической роли изучаемых процессов.

Раздел 7.6.1

ОКСИДОРЕДУКТАЗЫ.

К классу оксидоредуктаз относят ферменты, катализирующие окислительно-восстановительные реакции. Общая схема их может быть представлена следующим образом:

где AH2 —донор водорода, B — акцептор водорода. В живых организмах окисление осуществляется преимущественно путём отщепления атомов водорода или электронов от субстратов-доноров. Акцепторами атомов водорода или электронов могут быть различные вещества - коферменты (НАД, НАДФ, ФАД, ФМН, глутатион, липоевая кислота, убихинон), цитохромы. железосерные белки и кислород.

Подклассы оксидоредуктаз формируются в зависимости от природы функциональной группы донора водорода (электронов). Всего выделяют 19 подклассов. Основными из них являются следующие:

Оксидоредуктазы, действующие на СН-ОН-группу доноров. Ферменты, относящиеся к этому подклассу, окисляют спиртовые группы до альдегидных или кетонных групп. В качестве примера можно привести фермент алкогольдегидрогеназу (алкоголь:НАД-оксидоредуктаза; КФ 1.1.1.1). участвующую в метаболизме этанола в тканях:

Кроме окисления спиртов, ферменты этого подкласса участвуют в дегидрировании оксикислот (молочной, яблочной, изолимонной), моносахаридов и других соединений, содержащих гидроксильные группы.

Оксидоредуктазы, действующие на альдегидную или кетонную группу доноров. Эти ферменты окисляют альдегиды и кетоны до карбоновых кислот. К примеру, представитель данного подкласса - глицеральдегид-3-фосфатдегидрогеназа (D-глицеральдегид-3-фосфат:НАД-оксидоредуктаза (фосфорилирующая), КФ 1.2.1.12) - катализирует одну из промежуточных реакций распада глюкозы:

Важно отметить, что продукт этой реакции содержит богатую энергией фосфатную связь в 1-ом положении. Остаток фосфорной кислоты, образующий эту связь, может быть перенесён от 1,3-дифосфоглицерата на АДФ с образованием АТФ (см. далее).

Оксидоредуктазы, действующие на СН-СН-группу доноров. В результате катализируемых ими реакций СН-СН-группы превращаются в С=С-группы. то есть происходит образование ненасыщенных соединений из насыщенных. Например, фермент цикла трикарбоновых кислот сукцинатдегидрогеназа (сукцинат:акцептор - оксидоредуктаза, КФ 1.3.99.1) ускоряет окисление янтарной кислоты с образованием ненасыщенной фумаровой кислоты:

Оксидоредуктазы, действующие на CH-NH2 -группу доноров. Эти ферменты катализируют окислительное дезаминирование аминокислот и биогенных аминов. Амины при этом превращаются в альдегиды или кетоны, аминокислоты - в кетокислоты и выделяется аммиак. Так, глутаматдегидрогеназа (L-глутамат:НАД(Ф) - оксидоредуктаза (дезаминирующая), КФ 1.4.1.3) принимает участие в следующем превращении глутамата:

Оксидоредуктазы, действующие на серосодержащие группы доноров, катализируют окисление тиоловых (сульфгидрильных) групп до дисульфидных, а сульфитов - до сульфатов. Примером фермента является дигидролипоилдегидрогеназа (КФ 1.8.1.4), катализирующая одну из промежуточных реакций окислительного декарбоксилирования пирувата:

Оксидоредуктазы, действующие на пероксид водорода в качестве акцептора, сравнительно немногочисленны и объединены в отдельный подкласс, известный также под тривиальным названием пероксидазы. Примером фермента является глутатионпероксидаза (глутатион:Н2 О2 - оксидоредуктаза. КФ 1.11.1.9), участвующая в инактивации пероксида водорода в эритроцитах, печени и некоторых других тканях:

Оксидоредуктазы, действующие на пару доноров с включением молекулярного кислорода, или монооксигеназы - ферменты, катализирующие окисление органических соединений молекулярным кислородом, приводящее к включению одного из атомов кислорода в молекулы этих соединений. При этом второй атом кислорода включается в молекулу воды. Так реакция превращения фенилаланина в тирозин катализируется фенилаланин-4-монооксигеназой (КФ 1.14.16.1):

У некоторых людей генетический дефект этого фермента служит причиной заболевания, которое носит название фенилкетонурии.

К монооксигеназам относится также фермент, известный под названием цитохром Р450 (КФ 1.14.14.1) Он содержится, главным образом, в клетках печени и осуществляет гидроксилирование чуждых организму липофильных соединений, образующихся в качестве побочных продуктов реакций или попадающих в организм извне. Например, индол, образующийся из триптофана в результате деятельности микроорганизмов кишечника, подвергается в печени гидроксилированию по следующей схеме:

Появление гидроксильной группы повышает гидрофильность веществ и облегчает их последующий вывод из организма. Кроме того, цитохром Р450 принимает участие в отдельных этапах превращения холестерина и стероидных гормонов. Наличие у живых организмов высокоэффективной системы цитохрома Р450 приводит в ряде случаев к нежелательным практическим следствиям: сокращает время пребывания в организме человека лекарственных препаратов и тем самым снижает их терапевтический эффект.

Оксидоредуктазы, действующие на один донор с включением молекулярного кислорода, или диоксигеназы, катализируют превращения, в ходе которых оба атома молекулы О2 включаются в состав окисляемого субстрата. Например, в процессе катаболизма фенилаланина и тирозина происходит образование из гомогентизиновой кислоты малеилацетоацетата, в состав которого включаются оба атома кислорода:

Фермент, катализирующий эту реакцию, называется гомогентизат-1,2-диоксигеназой (КФ 1.13.11.5). В ряде случаев встречается врождённый дефицит этого фермента, что приводит к развитию заболевания, называемого алкаптонурией.

Раздел 7.6.2

ТРАНСФЕРАЗЫ.

Трансферазы - класс ферментов, катализирующих перенос функциональных групп от одного соединения к другому. В общем виде эти превращения можно записать:

где Х - переносимая функциональная группа. AX - донор группировки, В - акцептор. Подразделение на подклассы зависит от природы переносимых группировок.

Трансферазы, переносящие одноуглеродные фрагменты. К этому подклассу относятся ферменты, ускоряющие перенос метильных (—CH3 ), метиленовых (—СН2 —), метенильных (—СН=), формильных и родственных им групп. Так, при участии гуанидинацетат-метилтрансферазы (S-аденозилметионингуанидинацетат-метилтрансфераза, КФ 2.1.1.2) происходит синтез биологически активного вещества креатина:

Трансферазы, переносящие остатки карбоновых кислот (ацилтрансферазы). Они катализируют разнообразные химические процессы связанные с переносом остатков различных кислот (уксусной, пальмитиновой и др.) преимущественно от тиоэфиров коэнзима А на различные акцепторы. Примером реакции трансацетилирования может быть образование медиатора ацетилхолина при участии холин-ацетилтрансферазы (ацетил-КоА:холин-О-ацетилтрансфераза, КФ 2.3.1.6):

Трансферазы, переносящие гликозильные остатки (гликозилтрансфсразы), катализируют транспорт гликозильных остатков из молекул фосфорных эфиров к молекулам моносахаридов, полисахаридов и других веществ. Эти ферменты, в частности, играют основную роль в синтезе гликогена и крахмала, а также в первой фазе их деструкции. Ещё один фермент этого подкласса - УДФ-глюкуронилтрансфераза (УДФ-глюкуронат-глюкуронил-трансфераза (неспецифичная к акцептору), КФ 2.4.1.17) - участвует в процессах обезвреживания эндогенных и чужеродных токсических веществ в печени:

Трансферазы, переносящие азотистые группы. В этот подкласс входят аминотрансферазы, ускоряющие перенос α-аминогруппы аминокислот к α-углеродному атому кетокислот. Наиболее важным из этих ферментов является аланинаминотрансфераза (L-аланин:2-оксоглутарат-аминотрансфераза, КФ 2.6.1.2). катализирующая реакцию:

Трансферазы, переносящие фосфатные группы (фосфотрансферазы). Эта группа ферментов катализирует биохимические процессы, связанные с транспортом остатков фосфорной кислоты на различные субстраты. Указанные процессы имеют важное значение для жизнедеятельности организма, так как обеспечивают превращение ряда веществ в органические фосфоэфиры, обладающие высокой химической активностью и легко вступающие в последующие реакции. Фосфотрансферазы, использующие в качестве донора фосфата АТФ, принято называть киназами . Широко распространённым ферментом является гексокиназа (ATФ:D-гексоза-6-фосфотрансфераза. КФ 2.7.1.1.), ускоряющая перенос фосфатной группы с АТФ на моносахариды:

В некоторых случаях возможен и обратный перенос фосфатной группы с субстрата на АДФ с образованием АТФ. Так, фермент фосфоглицераткиназа (АТФ:D-3-фосфоглицерат-1-фосфотрансфераза, КФ 2.7.2.3) осуществляет превращение упомянутого ранее (см. "Оксидоредуктазы") 1.3-дифосфоглицерата:

Подобные реакции фосфорилирования АДФ с образованием АТФ, сопряжённые с превращением субстрата (а не с переносом электронов в дыхательной цепи), получили название реакций субстратного фосфорилирования. Роль этих реакций в клетке значительно возрастает при недостатке кислорода в тканях.

Раздел 7.6.3

ГИДРОЛАЗЫ.

Гидролазы - класс ферментов, катализирующих реакции расщепления органических соединений при участии воды (реакции гидролиза). Эти реакции протекают по следующей схеме:

где А-В - сложное соединение, А-Н и В-ОН - продукты его гидролиза. Реакции этого типа активно протекают в организме; они идут с выделением энергии и, как правило, необратимы.

Подклассы гидролаз формируются в зависимости от типа гидролизуемой связи. Наиболее важными являются следующие подклассы:

Гидролазы, действующие на сложные эфиры (или эстеразы) гидролизуют сложные эфиры карбоновой, фосфорной, серной и других кислот. Широко распространённым ферментом этого подкласса является триацилглицероллипаза (гидролаза эфиров глицерола, КФ 3.1.1.3). ускоряющая гидролиз ацилглицеролов:

Другие представители эстераз расщепляют сложноэфирные связи в ацетилхолине (ацетилхолинэстераза), фосфолипидах (фосфолипазы), нуклеиновых кислотах (нуклеазы), фосфоорганических эфирах (фосфатазы).

Гидролазы, действующие на гликозидные связи (гликозидазы) ускоряют реакции гидролиза олиго- и полисахаридов, а также других соединений, содержащих моносахаридные остатки (например, нуклеозидов). Характерным представителем является сахараза (β-D-фруктофуранозид-фруктогидролаза, КФ 3.2.1.26). катализирующая расщепление сахарозы:

Гидролазы, действующие на пептидные связи (пептидазы), катализируют реакции гидролиза пептидных связей в белках и пептидах. К этой группе относятся пепсин, трипсин, химотрипсин, катепсин и другие протеолитические ферменты. Гидролиз пептидных связей происходит по следующей схеме:

Гидролазы, действующие на C-N-связи, отличающиеся от пептидных, - ферменты, ускоряющие гидролиз амидов органических кислот. Представитель этого подкласса - глутаминаза (L-глутамил-амидогидролаза, КФ 3.5.1.2) - участвует в поддержании кислотно-основного состояния организма, катализируя в почках гидролиз глутамина:

Раздел 7.6.4

ЛИАЗЫ.

Лиазы - класс ферментов, катализирующих негидролитические реакции расщепления субстратов с образованием двойных связей или, наоборот, присоединения по месту разрыва двойной связи. Общая схема этих реакций:

где А—В - субстрат, А и В - продукты реакции. В результате таких реакций часто выделяются простые вещества, например, СО2 , NH3 ,H2 О.

Углерод-углерод-лиазы катализируют разрыв связи между двумя атомами углерода. Среди них наибольшее значение имеют карбокси-лиазы (декарбоксилазы), под влиянием которых осущест-вляется декарбоксилирование a-кето- и аминокислот, лиазы кетокислот , к которым относится цитратсинтаза, альдегид-лиазы (альдолазы). К последним относитсяфруктозодифосфатальдолаза (фруктозо-1,6-дифосфат-D-глицеральдегид-3-фосфат-лиаза, КФ 4.1.2.13), катализирующая реакцию:

Углерод-кислород-лиазы катализируют разрыв связи между атомами углерода и кислорода. В этот подкласс входят прежде всего гидро-лиазы, участвующие в реакциях дегидратации и гидратации. Примером может служить сериндегидратаза (L-серин-гидро-лиаза (дезаминирующая), КФ 4.2.1.3), осуществляющая превращение:

Иногда за основу рабочего названия может быть принята обратная реакция с применением термина "гидратаза". Так, для фермента цикла трикарбоновых кислот L-малат-гидро-лиазы (КФ 4.2.1.2) рекомендовано название "фумаратгидратаза":

Углерод-азот-лиазы участвуют в отщеплении азотсодержащих групп. Представителем этого подкласса является гистидин-аммиак-лиаза (L-гистидин-аммиак-лиаза, КФ 4.3.1.3), участвующая в дезаминировании гистидина:

Углерод-сера-лиазы катализируют отщепление сульфгидрильных групп. К этому подклассу относятся десульфгидразы серу содержащих аминокислот, например,цистеиндесульфгидраза (L-цистеин-сероводород-лиаза (дезаминирующая), КФ 4,4.1.1).

Раздел 7.6.5

ИЗОМЕРАЗЫ.

Изомеразы - класс ферментов, ускоряющих процессы внутримолекулярных превращений с образованием изомеров. Схематически реакции такого типа могут быть представлены следующим образом:

где А и А" - вещества-изомеры.

Изомеразы - сравнительно немногочисленный класс ферментов, он подразделяется на следующие подклассы в зависимости от типа катализируемой реакции изомеризации:

Рацемазы и эпимеразы катализируют взаимопревращение изомеров, содержащих асимметрические атомы углерода. Рацемазами называются ферменты, действующие на субстраты с одним асимметрическим атомом, например, превращающие L-аминокислоты в D-аминокислоты. Одним из таких ферментов являетсяaлaнинрацемаза (аланин-рацемаза. КФ 5.1.1.1), катализирующая реакцию:


Эпимеразами называются ферменты, действующие на субстраты с несколькими асимметрическими атомами углерода. К таким ферментам относится УДФ-глюкозо-эпимераза (УДФ-глюкоза-4-эпимераза, КФ 5.1.3.2). участвующая в процессах взаимопревращения моносахаридов:

Цис-транс-изомеразы - ферменты, вызывающие изменение геометрической конфигурации относительно двойной связи. Примером такого фермента являетсямалеилацетоацетатизомераза (малеилацетоацетат-цис-транс-изомераза, КФ 5.2.1.2), участвующая в катаболизме фенилаланина и тирозина и переводящая малеилацетоацетат (см. 4.6.1) в фумарилацетоацетат:

Внутримолекулярные оксидоредуктазы - изомеразы, катализирующие взаимопревращения альдоз и кетоз. При этом происходит окисление СН-ОН-группы с одновременным восстановлением соседней С=О-группы. Так, триозофосфатизомераза (D-глицеральдегид-3-фосфат-кетол-изомераза, КФ 5.3.1.1) катализирует одну из реакций углеводного обмена:

К изомеразам относятся также внутримолекулярные трансферазы, осуществляющие перенос одной группы с одной части молекулы субстрата на другую часть той же молекулы, ивнутримолекулярные лиазы, катализирующие реакции дециклизации, а также превращения одного типа кольца в другой.

Следует подчеркнуть, что не все биохимические процессы. результатом которых является изомеризация, катализируются изомеразами. Так, изомеризация лимонной кислоты в изопимонную происходит при участии фермента аконитатгидратазы (цитрат (изоцитрат)-гидро-лиаза, КФ 4.2.1.3), катализирующей реакции дегидратации-гидратации с промежуточным образованием цис-аконитовой кислоты:

Раздел 7.6.6

ЛИГАЗЫ.

Лигазы - класс ферментов, катализирующих синтез органических соединений из активированных за счет распада АТФ (или ГТФ, УТФ, ЦТФ) исходных веществ. Для ферментов этого класса сохраняется также тривиальное название синтетазы. В связи с этим, согласно рекомендациям IUBMB, термин "синтетазы" не должен применяться для ферментов, в действии которых не участвуют нуклеозидтрифосфаты. Реакции, катализируемые лигазами (синтетазами), протекают по схеме:

,

где А и В - взаимодействующие вещества; А—В - вещество, образующееся в результате взаимодействия.

Поскольку в результате действия этих ферментов образуются новые химические связи, подклассы VI класса формируются в зависимости от характера вновь образованных связей.

Лигазы, образующие связи углерод-кислород. К ним относит-ся группа ферментов, известных как аминокислота-тРНК-лигазы (аминоацил-тРНК-синтетазы). которые катализируют реакции взаимодействия аминокислот и соответствующих транспортных РНК. В этих реакциях образуются активные формы аминокислот, способные участвовать в процессе синтеза белка на рибосомах. Примером фермента может служить тирозил-тРНК-синтетаза (L-тирозин:тРНК-лигаза (АМФ-образующая), КФ 6.1.1.1), участвующая в реакции:

Лигазы, образующие связи углерод-сера. Этот подкласс представлен в первую очередь ферментами, катализирующими образо-вание тиоэфиров жирных кислот с коэнзимом А. При участии этих ферментов синтезируются ацил-КоА - активные формы жирных кислот, способные вступать в различные реакции биосинтеза и распада. Рассмотрим одну из реакций активации жирных кислот, протекающую в присутствии фермента ацил-КоА-синтетазы (карбоновая кислота:коэнзим А-лигаза (АМФ-образующая). КФ 6.2.1.2):

Лигазы, образующие связи углерод-азот, катализируют мно-гочисленные реакции введения азотсодержащих групп в органические соединения. Примером может служитьглутаминсинтетаза (L-глутамин:аммиак-γ-лигаза (АДФ-образующая), КФ 6.3.1.2). участвующая в обезвреживании токсичного продукта обмена - аммиака - в реакции с глутаминовой кислотой:

Лигазы, образующие связи углерод-углерод. Из этих ферментов наиболее изучены карбоксилазы, обеспечивающие карбоксилирование ряда соединений, в результате чего происходит удлиннение углеродных цепей. Важнейшим представителем данного класса является пируваткарбоксилаза (пируват:СО2 -лигаза (АДФ-образующая), КФ 6.4.1.1), ускоряющая реакцию образования оксалоацетата - ключевого соединения цикла трикарбоновых кислот и биосинтеза углеводов:

Напомним, что реакции с участием АТФ катализируются не только ферментами VI класса, но и некоторыми ферментами II класса (фосфотрансферазами или киназами). Важно уметь отличать эти типы реакций. Их различие заключается в том, что в трансферазных реакциях АТФ является донором фосфатных групп , поэтому в результате этих реакцию не происходит выделения Н3 РО4 (примеры см. выше). Наоборот, в синтетазных реакциях АТФ служит источником энергии , выделяемой при её гидролизе, поэтому одним из продуктов такой реакции будет являться неорганический орто- или пирофосфат.

Раздел 7.7.1

Правила работы с ферментами

Ферменты, как все белки, являются относительно неустойчивыми веществами. Они легко подвергаются денатурации и инактивации. Поэтому при работе с ними необходимо выполнять определенные условия.

  • При хранении объекта изучения свыше нескольких часов при комнатной температуре фермент почти полностью инактивируется. Поэтому анализ определения активности фермента следует проводить в возможно короткие сроки. При необходимости длительное хранение возможно, если раствор фермента высушивают из замороженного состояния в высоком вакууме (лиофильная сушка). В этом случае фермент почти полностью сохраняет активность при дальнейшем его хранении при комнатной температуре. Некоторые ферменты хорошо сохраняются в концентрированных растворах солей, например, в насыщенном сульфате аммония (процесс высаливания). При надобности осадок фермента можно отцентрифугировать и растворить в физиологическом растворе или соответствующем буфере. Если необходимо, от избытка соли можно избавиться диализом.
  • Необходимо помнить о чувствительности ферментов к колебаниям рН среды. За небольшим исключением большинство ферментов инактивируется в растворах с рН ниже 5 или выше 9, а оптимум действия ферментов появляется в зоне нескольких единиц или десятых долей единицы значения рН. Определение рН буферных растворов, используемых при работе с ферментами, рекомендуется проводить очень точно с помощью рН-метра.
  • Ферменты легко разрушаются сильнодействующими реагентами: кислотами, щелочами, окислителями, солями тяжелых металлов. Необходимо работать с химически чистыми реактивами и бидистиллированной водой, т. к. даже небольшое загрязнение реактивов, особенно примесью металлов, которые могут действовать как модуляторы, приводит к изменению активности фермента.
  • При работе с ферментами как нигде обязательно строгое соблюдение стандартизации условий исследования: точное выдерживание температурного и временного режимов, использование реактивов из одной партии, а при смене реактивов надо снова откалибровать получаемые данные. Если развивающаяся окраска в цветной реакции неустойчива во времени, необходимо строго соблюдать сроки фотометрирования.
  • Рекомендуется работать в условиях достаточной степени насыщения фермента субстратом, так как это обстоятельство существенно сказывается на конечном результате, недостаток субстрата нивелирует различия между вариантами.
  • При работе с ферментами необходимо учитывать органоспецифичный изоферментный спектр. Часто такая специфичность затрагивает условия действия энзима. На ход реакции может повлиять различное сродство к субстрату, иная чувствительность к рН, свойственные изоэнзимам того или иного органа или ткани. Переносить метод исследования активности фермента с одного объекта на другой (например, с сыворотки на ткань или с одного органа на другой) нужно крайне осторожно, с учетом всех известных данных о ферменте и его множественных формах, а также с тщательной проверкой результатов.

Для широкого внедрения различных биохимических (ферментативных) реакций вводится автоматизация наиболее общепризнанных и необходимых анализов, а также унификация и стандартизация лабораторных тестов. Это рационально и необходимо как для повышения точности, качества проведения проб, так и для сравнения данных, которые получены в разных лабораториях.

Общепринятым является и обязательное параллельное исследование, наряду с изучаемой патологией, физиологического контроля — группы практически здоровых для установления нормальных, физиологических колебаний. Понимая относительность понятия «нормальная величина», следует принять, что для выявления различий в патологии и оценки патологического признака, за «норму», как правило, принимается средняя арифметическая М±1σ или 2σ (при нормальном Гауссовом распределении) в зависимости от степени колебания показателя.

Раздел 7.7.2

Принципы определения активности ферментов в биологическом материале.

5.6.2. Уникальное свойство ферментов ускорять химические реакции может быть использовано для количественного определения содержания этих биокатализаторов в биологическом материале (тканевом экстракте, сыворотке крови и т.д.). При правильно подобранных экспериментальных условиях почти всегда существует пропорциональность между количеством фермента и скоростью катализируемой реакции, поэтому по активности фермента можно судить о количественном содержании его в исследуемой пробе.

Измерение ферментативной активности основывается на сравнении скорости химической реакции в присутствии активного биокатализатора со скоростью реакции в контрольном растворе, в котором фермент отсутствует или инактивирован.

Исследуемый материал помещают в инкубационную среду, где созданы оптимальные температура, рН среды, концентрации активаторов и субстратов. Одновременно осуществляют постановку контрольной пробы, в которую фермент не добавляют. Спустя некоторое время реакцию останавливают путём добавления различных реагентов (изменяющих рН среды, вызывающих денатурацию белков и т.д.) и проводят анализ проб.

Для того чтобы определить скорость ферментативной реакции, необходимо знать:

  • разность концентраций субстрата или продукта реакции до и после инкубации;
  • время инкубации;
  • количество материала, взятое для анализа.

Наиболее часто активность фермента оценивают по количеству образовавшегося продукта реакции. Так поступают, например, при определении активности аланинаминотрансферазы, катализирующей следующую реакцию:

Активность фермента можно рассчитывать также исходя из количества израсходованного субстрата. В качестве примера можно привести способ определения активности α-амилазы - фермента, расщепляющего крахмал. Измерив содержание крахмала в пробе до и после инкубации и вычислив разность, находят количество субстрата, расщеплённого за время инкубации.

Раздел 7.7.3

Методы измерения активности ферментов

Существует большое количество методов измерения активности ферментов, различающихся по технике исполнения, специфичности, чувствительности.

Чаще всего для определения применяются фотоэлектроколориметрические методы . В основе этих методов лежат цветные реакции с одним из продуктов действия ферментов. При этом интенсивность окраски получаемых растворов (измеренная на фотоэлектроколориметре) пропорциональна количеству образовавшегося продукта. Например, в процессе реакций, катализируемых аминотрансферазами, накапливаются α-кетокислоты, которые дают с 2,4-динитрофенилгидразином соединения красно-бурого цвета:

Если исследуемый биокатализатор обладает низкой специфичностью действия, то можно подобрать такой субстрат, в результате реакции с которым образуется окрашенный продукт. Примером может служить определение щелочной фосфатазы - фермента, широко распространённого в тканях человека, его активность в плазме крови существенно меняется при заболеваниях печени и костной системы. Этот фермент в щелочной среде гидролизует большую группу фосфорнокислых эфиров, как природных, так и синтетических. Одним из синтетических субстратов является паранитрофенилфосфат (бесцветный), который в щелочной среде расщепляется на ортофосфат и паранитрофенол (жёлтого цвета).

За ходом реакции можно наблюдать, измеряя постепенно нарастающую интенсивность окраски раствора:

Для ферментов, обладающих высокой специфичностью действия, такой подбор субстратов, как правило, невозможен.

Спектрофотометрические методы основаны на изменении ультрафиолетового спектра химических веществ, принимающих участие в реакции. Большинство соединений поглощает ультрафиолетовые лучи, причём поглощаемые длины волн характерны для присутствующих в молекулах этих веществ определённых групп атомов. Ферментативные реакции вызывают внутримолекулярные перегруппировки, в результате которых меняется ультрафиолетовый спектр. Эти изменения можно зарегистрировать на спектрофотометре.

Спектрофотометрическими методами, например, определяют активность окислительно-восстановительных ферментов, содержащих в качестве коферментов НАД или НАДФ. Эти коферменты действуют как акцепторы или доноры атомов водорода и, таким образом, либо восстанавливаются, либо окисляются в процессах метаболизма. Восстановленные формы этих коферментов имеют ультрафиолетовый спектр с максимумом поглощения при 340 нм, окисленные формы этого максимума не имеют. Так, при действии лактатдегидрогеназы на молочную кислоту происходит перенос водорода на НАД, что приводит к увеличению поглощения НАДН при 340 нм. Величина этого поглощения в оптических единицах пропорциональна количеству образовавшейся восстановленной формы кофермента.

По изменению содержания восстановленной формы кофермента можно определить активность фермента.

Флюориметрические методы. В основе этих методов лежит явление флюоресценции, которое заключается в том, что исследуемый объект под влиянием облучения излучает свет с более короткой длиной волны. Флюориметрические методы определения активности ферментов более чувствительны, чем спектрофотометрические. Сравнительно новыми и ещё более чувствительными являются хемилюминесцентные методы с применением люциферин-люциферазной системы. Такие методы позволяют определять скорость реакций, протекающих с образованием АТФ. При взаимодействии люциферина (карбоновой кислоты сложного строения) с АТФ образуется люцифериладенилат. Это соединение окисляется при участии фермента люциферазы, что сопровождается световой вспышкой. Измеряя интенсивность световых вспышек, удаётся определять количества АТФ порядка нескольких пикомолей (10-12 моль).

Титрометрические методы . Ряд ферментативных реакций сопровождается изменением рН инкубационной смеси. Примером такого фермента является липаза поджелудочной железы. Липаза катализирует реакцию:

Образующиеся жирные кислоты могут быть оттитрованы, причём количество щёлочи, израсходованное на титрование, будет пропорционально количеству выделившихся жирных кислот и, следовательно, активности липазы. Определение активности этого фермента имеет клиническое значение.

Манометрические методы основаны на измерении в закрытом реакционном сосуде объёма газа, выделившегося (или поглощённого) в ходе энзиматической реакции. С помощью таких методов были открыты и изучены реакции окислительного декарбоксилирования пировиноградной и α-кетоглутаровой кислот, протекающие с выделением СО2 . В настоящее время эти методы используются редко.

Раздел 7.7.4

Единицы активности ферментов и их применение.

Международная комиссия по ферментам предложила за единицу активности любого фермента принимать такое количество фермента, которое при заданных условиях катализирует превращение одного микромоля (10-6 моль) субстрата в единицу времени (1 мин, 1 час) или одного микроэквивалента затронутой группы в тех случаях, когда атакуется более одной группы в каждой молекуле субстрата (белки, полисахариды и другие). Должна быть указана температура, при которой проводится реакция. Результаты измерений активности ферментов могут быть выражены в единицах общей, удельной и молекулярной активности.

За единицу общей активности фермента в расчёте на количество материала, взятого для исследования . Так, активность аланинаминотрансферазы в печени крыс равна 1670 мкмоль пирувата в час на 1 г ткани; активность холинэстеразы в сыворотке крови человека составляет 250 мкмоль уксусной кислоты в час на 1 мл сыворотки при 37°C.

Особого внимания исследователя требуют высокие значения активности фермента как в норме, так и в патологии. Рекомендуется работать с небольшими показателями активности фермента. Для этого источник фермента берут в меньшем количестве (сыворотку разводят в несколько раз физиологическим раствором, а для ткани готовят меньший процентный гомогенат). По отношению к ферменту в таком случае создаются условия насыщения субстратом, что способствует проявлению его истинной активности.

Общая активность фермента рассчитывается с помощью формулы:

где а - активность фермента (общая), ΔС - разность концентраций субстрата до и после инкубации; В - количество материала, взятого на анализ, t - время инкубации; n - разведение.

Следует иметь в виду, что показатели активности ферментов сыворотки крови и мочи, исследуемых в диагностических целях, выражают в единицах общей активности.

Поскольку ферменты являются белками, важно знать не только общую активность фермента в исследуемом материале, но и ферментативную активность белка, находящегося в данной пробе. За единицу удельной активности принимают такое количество фермента, которое катализирует превращение 1 мкмоль субстрата в единицу времени в расчёте на 1 мг белка пробы . Для вычисления удельной активности фермента необходимо общую активность разделить на содержание белка в пробе:

Чем хуже очищен фермент, тем больше в пробе находится посторонних балластных белков, тем ниже удельная активность. В ходе очистки количество таких белков уменьшается, и соответственно удельная активность фермента повышается. Предположим, в исходном биологическом материале, являющемся источником фермента (измельчённая печень, кашица из растительной ткани), удельная активность была равна 0,5 мкмоль/ (мг белка× мин). После дробного осаждения сульфатом аммония и гель-фильтрации через сефадекс она повысилась до 25 мкмоль/ (мг белка× мин), т.е. увеличилась в 50 раз. К оценке эффективности очистки ферментных препаратов прибегают при производстве лекарственных средств энзиматической природы.

Удельную активность определяют в том случае, когда нужно сопоставить активность разных препаратов одного и того же фермента. Если требуется сравнить активность разных ферментов, рассчитывают молекулярную активность.

Молекулярная активность (или число оборотов фермента) - это количество моль субстрата, подвергающееся превращению под действием 1 моль фермента в единицу времени (обычно в 1 минуту). Разным ферментам присуща неодинаковая молекулярная активность. Уменьшение числа оборотов ферментов происходит под действием неконкурентных ингибиторов. Изменяя конформацию каталитического центра фермента, эти вещества понижают сродство фермента к субстрату, что приводит к уменьшению числа молекул субстрата, реагирующих с одной молекулой фермента в единицу времени.

Примеры

Обучающие задачи и эталоны их решения.

1. Задачи

1. Какие ферменты называют рацемазами?

2. Расшифруйте систематическое название фермента (отдельно для каждого из элементов, выделенных разными цветами):
S-аденозилметионин: гуанидинацетат- метил трансфераза ?

Определите:
а) тип реакции;
б) класс фермента;
в) подкласс.

2. Эталоны решения

1. Рацемазы - ферменты, катализирующие взаимопревращение оптических изомеров, содержащих единственный асимметрический атом углерода (см. раздел 2.3).

2. Систематическое название фермента читается с конца. Фермент относится к классу трансфераз , катализирует реакцию переноса метильной группы на гуанидинацетат (акцептор метильной группы) с S-аденозилметионина (донор метильной группы) (см. разделы 2.2 - 2.3).

3. а) В данной реакции происходит расщепление вещества без участия молекул воды

б) Негидролитическое расщепление субстрата с образованием двух продуктов катализируют ферменты, относящиеся к четвёртому классу (лиазы)

в) Разрывается связь между первым и вторым углеродными атомами, что приводит к отщеплению карбоксильной группы в виде СО2 . Следовательно, подкласс фермента - углерод-углерод-лиазы (см. раздел 2.3).

Часто наряду с витаминами, минералами и другими полезными для организма человека элементами упоминают вещества под названием ферменты. Что такое ферменты и какую функцию в организме они выполняют, какова их природа и где они находятся?

Это вещества белковой природы, биокатализаторы. Без них не существовало бы детского питания, готовых каш, кваса, брынзы, сыра, йогурта, кефира. Они влияют на работу всех систем человеческого организма. Недостаточная или избыточная активность этих веществ негативно сказывается на здоровье, поэтому нужно знать, что такое ферменты, чтобы избежать проблем, вызванных их нехваткой.

Что это такое?

Ферменты - это синтезирующиеся живыми клетками белковые молекулы. Их более сотни насчитывается в каждой клетке. Роль этих веществ колоссальна. Они влияют на течение скорости химических реакций при температуре, которая подходит для данного организма. Другое название ферментов - биологические катализаторы. Увеличение скорости химической реакции происходит за счет облегчения ее протекания. Как катализаторы, они не расходуются в процессе реакции и не изменяют ее направления. Главные функции ферментов заключаются в том, что без них очень медленно в живых организмах протекали бы все реакции, а это бы заметно сказывалось на жизнеспособности.

Например, при пережевывании продуктов, которые содержат крахмал (картофель, рис), во рту появляется сладковатый привкус, что связано с работой амилазы - фермента для расщепления крахмала, присутствующего в слюне. Сам по себе крахмал безвкусный, так как является полисахаридом. Сладкий вкус имеют продукты его расщепления (моносахариды): глюкоза, мальтоза, декстрины.

Все делятся на простые и сложные. Первые состоят только из белка, а вторые - из белковой (апофермент) и небелковой (кофермент) части. Коферментами могут быть витамины групп В, Е, К.

Классы ферментов

Традиционно эти вещества разделены на шесть групп. Название им первоначально давали в зависимости от субстрата, на который действует определенный фермент, путем добавления к его корню окончания -аза. Так, те ферменты, что гидролизируют белки (протеины) стали называть протеиназами, жиры (липос) - липазами, крахмал (амилон) - амилазами. Потом ферменты, катализирующие сходные реакции, получили названия, которые указывают на тип соответствующей реакции - ацилазы, декарбоксилазы, оксидазы, дегидрогеназы и другие. Большинство этих названий и сегодня используется.

Позже Международный биохимический союз ввел номенклатуру, согласно которой название и классификация ферментов должны соответствовать типу и механизму катализируемой химической реакции. Данный шаг принес облегчение в систематизации данных, что относятся к различным аспектам метаболизма. Реакции и катализирующие их ферменты делятся на шесть классов. Каждый класс состоит из нескольких подклассов (4-13). Первая часть названия фермента отвечает названию субстрата, вторая - типу катализируемой реакции с окончанием -аза. У каждого фермента по классификации (КФ) есть свой кодовый номер. Первой цифре отвечает класс реакции, следующей - подкласс и третьей - подподкласс. Четвертой цифрой обозначен номер фермента по порядку в его подподклассе. Например, если КФ 2.7.1.1, то фермент принадлежит ко 2-му классу, 7-му подклассу, 1-му подподклассу. Последней цифрой обозначается фермент гексокиназа.

Значение

Если говорить о том, что такое ферменты, нельзя обойти стороной вопрос об их значении в современном мире. Они нашли широкое применение почти во всех отраслях деятельности человека. Такая их распространенность связана с тем, что они способны вне живых клеток сохранять свои уникальные свойства. В медицине, например, применяются ферменты групп липаз, протеаз, амилаз. Они расщепляют жиры, белки, крахмал. Как правило, этот тип входит в состав таких лекарственных препаратов, как «Панзинорм», «Фестал». Эти средства в первую очередь используются с целью лечения заболеваний ЖКТ. Некоторые ферменты способны растворять в кровеносных сосудах тромбы, они помогают при лечении гнойных ран. В лечении онкологических заболеваний энзимотерапия занимает особое место.

Благодаря способности расщеплять крахмал в пищевой промышленности широко используется фермент амилаза. В этой же области применяют липазы, которые расщепляют жиры и протеазы, расщепляющие белки. В пивоварении, виноделии и хлебопечении используют ферменты амилазы. В приготовлении готовых каш и для смягчения мяса применяют протеазы. В производстве сыра используют липазы и сычужный фермент. В косметической промышленности также не обойтись без них. Они входят в состав стиральных порошков, кремов. В стиральные порошки, например, добавляют расщепляющую крахмал амилазу. Белковые загрязнения и белки расщепляются протеазами, а липазы очищают ткань от масла и жира.

Роль ферментов в организме

Два процесса отвечают в организме человека за обмен веществ: анаболизм и катаболизм. Первый обеспечивает усвоение энергии и необходимых веществ, второй - распад продуктов жизнедеятельности. Постоянное взаимодействие этих процессов влияет на усвоение углеводов, белков и жиров и поддержание жизнедеятельности организма. Обменные процессы регулируются тремя системами: нервной, эндокринной и кровеносной. Они могут нормально функционировать с помощью цепи ферментов, которые в свою очередь обеспечивают адаптацию человека к изменениям условий внешней и внутренней среды. В состав ферментов входит как белковая, так и небелковая продукция.

В процессе биохимических реакций в организме, в протекании которых принимают участие ферменты, сами они не расходуются. У каждого из них своя химическая структура и своя уникальная роль, поэтому каждый инициирует только определенную реакцию. Биохимические катализаторы помогают прямой кишке, легким, почкам, печени выводить токсины и продукты жизнедеятельности из организма. Также они способствуют построению кожи, костей, нервных клеток, мышечных тканей. Специфические ферменты используются для окисления глюкозы.

Все ферменты в организме делятся на метаболические и пищеварительные. Метаболические участвуют в нейтрализации токсинов, производстве белков и энергии, ускоряют в клетках биохимические процессы. Так, например, супероксидисмутаза является сильнейшим антиоксидантом, который содержится в естественном виде в большинстве зеленых растений, белокочанной, брюссельской капусте и брокколи, в проростках пшеницы, зелени, ячмене.

Активность ферментов

Для того чтобы данные вещества полностью выполняли свои функции, необходимы определенные условия. На их активность влияет в первую очередь температура. При повышенной возрастает скорость химических реакций. В результате увеличения скорости молекул у них появляется больше шансов на столкновение друг с другом, и возможность протекания реакции, следовательно, увеличивается. Оптимальная температура обеспечивает наибольшую активность. Вследствие денатурации белков, которая происходит при отклонении оптимальной температуры от нормы, снижается скорость химической реакции. При достижении температуры точки замерзания фермент не денатурирует, но инактивируется. Способ быстрого замораживания, который широко используют для длительного хранения продуктов, останавливает рост и развитие микроорганизмов с последующей инактивацией ферментов, которые находятся внутри. Как результат, продукты питания не разлагаются.

На активность ферментов также влияет кислотность окружающей среды. Работают они при нейтральном рН. Только некоторые из ферментов работают в щелочной, сильнощелочной, кислой или сильнокислой среде. Например, сычужный фермент расщепляет белки в сильнокислой среде в желудке человека. На фермент могут действовать ингибиторы и активаторы. Активируют их некоторые ионы, например, металлов. Другие ионы оказывают подавляющее действие на активность ферментов.

Гиперактивность

Избыточная активность ферментов несет свои последствия для функционирования всего организма. Во-первых, она провоцирует повышение скорости действия фермента, что в свою очередь вызывает дефицит субстрата реакции и образование избытка продукта химической реакции. Дефицит субстратов и накопление названных продуктов заметно ухудшает самочувствие, нарушает жизнедеятельность организма, вызывает развитие заболеваний и может закончиться смертью человека. Накопление мочевой кислоты, например, приводит к возникновению подагры и почечной недостаточности. Из-за отсутствия субстрата не возникнет избытка продукта. Это работает только в тех случаях, когда без одного и другого можно обойтись.

Причин избытка активности ферментов несколько. Первая - это мутация гена, она может быть врожденной или приобретенной под влиянием мутагенов. Второй фактор - избыток в воде или пище витамина или микроэлемента, который необходим для работы фермента. Избыток витамина С, к примеру, через повышенную активность ферментов синтеза коллагена нарушает механизмы заживления ран.

Гипоактивность

Как повышенная, так и пониженная активность ферментов негативно сказывается на деятельности организма. Во втором случае возможно полное прекращение активности. Это состояние резко снижает скорость химической реакции фермента. Как результат, накапливание субстрата дополняется дефицитом продукта, что приводит к серьезным осложнениям. На фоне нарушений жизнедеятельности организма ухудшается самочувствие, развиваются заболевания, и может быть летальный исход. Накопление аммиака или дефицит АТФ приводит к смерти. Из-за накопления фенилаланина развивается олигофрения. Здесь также действует принцип, что при отсутствии субстрата фермента не возникнет накопления субстрата реакции. Плохое влияние на организм оказывает состояние, при котором не выполняют своих функций ферменты крови.

Рассматривают несколько причин гипоактивности. Мутация генов врожденная или приобретенная - это первое. Состояние можно откорректировать с помощью генотерапии. Можно попробовать исключить из пищи субстраты отсутствующего фермента. В некоторых случаях это может помочь. Второй фактор - отсутствие в пище витамина или микроэлемента, необходимых для работы фермента. Следующие причины - нарушенная активация витамина, дефицит аминокислот, ацидоз, появление ингибиторов в клетке, денатурация белков. Активность ферментов снижается также со снижением температуры тела. Некоторые факторы влияют на функции ферментов всех типов, а другие - только на работу определенных.

Пищеварительные ферменты

От процесса приема пищи человек получает удовольствие и иногда игнорирует то, что главная задача пищеварения - это превращение продуктов питания в вещества, способные стать источником энергии и строительным материалом для тела, всасываясь в кишечник. Ферменты белков способствуют этому процессу. Пищеварительные вещества вырабатываются органами пищеварения, принимающими участие в процессе расщепления пищи. Действие ферментов нужно для того, чтобы получать необходимые углеводы, жиры, аминокислоты из пищи, что составляет необходимые питательные вещества и энергию для нормальной жизнедеятельности организма.

С целью нормализации нарушенного пищеварения рекомендуется с приемом пищи одновременно применять и необходимые белковые вещества. При переедании можно принять 1-2 таблетки после или во время еды. В аптеках продается большое количество различных ферментных препаратов, которые способствуют улучшению процессов пищеварения. Запастись ими следует при приеме одного вида питательных веществ. При проблемах с пережевыванием или глотанием пищи необходимо во время еды принимать ферменты. Весомыми причинами для их использования могут быть также такие заболевания, как приобретенные и врожденные ферментопатии, синдром раздраженной толстой кишки, гепатит, холангит, холецистит, панкреатит, колит, хронический гастрит. Ферментные препараты следует принимать вместе с лекарствами, влияющими на процесс пищеварения.

Энзимопатология

В медицине есть целый раздел, который занимается поиском связи между заболеванием и отсутствием синтеза определенного фермента. Это область энзимологии - энзимопатология. Недостаточный синтез ферментов также подлежит рассмотрению. Например, наследственное заболевание фенилкетонурия развивается на фоне потери способности клеток печени осуществлять синтез этого вещества, что катализирует превращение в тирозин фенилаланина. Симптомами данного заболевания являются расстройства психической деятельности. Из-за постепенного накопления токсических веществ в организме больного тревожат такие признаки, как рвота, беспокойство, повышенная раздражительность, отсутствие интереса к чему-либо, выраженная усталость.

При рождении ребенка патология не проявляется. Первичную симптоматику можно заметить в возрасте от двух до шести месяцев. Второе полугодие жизни малыша характеризируется выраженным отставанием в психическом развитии. У 60% больных развивается идиотия, менее чем 10% ограничиваются слабой степенью олигофрении. Ферменты клетки не справляются со своими функциями, но это можно поправить. Своевременная диагностика патологических изменений способна приостановить развитие заболевание до периода полового созревания. Лечение заключается в ограничении поступления с пищей фенилаланина.

Ферментные препараты

Отвечая на вопрос о том, что такое ферменты, можно отметить два определения. Первое - это биохимические катализаторы, а второе - это препараты, которые их содержат. Они способны нормализировать состояние среды в желудке и кишечнике, обеспечить расщепление до микрочастиц конечных продуктов, улучшить процесс всасывания. Они также препятствуют возникновению и развитию гастроэнтерологических заболеваний. Наиболее известным из ферментов является лекарственный препарат «Мезим Форте». В своем составе он имеет липазу, амилазу, протеазу, которые способствуют уменьшению болей при хроническом панкреатите. Капсулы принимают в качестве заместительного лечения при недостаточной выработке поджелудочной железой необходимых ферментов.

Данные препараты употребляются преимущественно во время еды. Количество капсул или таблеток назначает доктор, исходя из выявленных нарушений механизма всасывания. Хранить их лучше в холодильнике. При длительном приеме пищеварительных ферментов привыкания не возникает, и на работе поджелудочной железы это не сказывается. При выборе препарата стоит обратить внимание на дату, соотношение качества и цены. Препараты ферментов рекомендуют принимать при хронических заболеваниях органов пищеварения, при переедании, при периодических проблемах с желудком, а также при отравлении продуктами питания. Чаще всего доктора назначают таблетированный препарат «Мезим», который хорошо зарекомендовал себя на отечественном рынке и уверенно держит позиции. Есть и другие аналоги этого препарата, не менее известные и более чем доступные по цене. В частности, многие предпочитают таблетки "Пакреатин" или "Фестал", обладающие теми же свойствами, что и более дорогие аналоги.

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты ) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент , и небелковую часть – кофактор . Примером сложных ферментов являются сукцинатдегидрогеназа (содержит ФАД), аминотрансферазы (содержат пиридоксальфосфат), различные пероксидазы (содержат гем), лактатдегидрогеназа (содержит Zn 2+), амилаза (содержит Ca2+ ).

Кофактор , в свою очередь, может называться коферментом (НАД+ , НАДФ+ , ФМН, ФАД, биотин) или простетической группой (гем, олигосахариды, ионы металлов Fe2+ , Mg2+ , Ca2+ , Zn2+ ).

Деление на коферменты и простетические группы не всегда однозначно:
если связь кофактора с белком прочная, то в этом случае говорят о наличии простетической группы ,
но если в качестве кофактора выступает производное витамина – то его называют коферментом , независимо от прочности связи.

Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Кофактор входит в состав активного центра, участвует в связывании субстрата или в его превращении.

Как многие белки, ферменты могут быть мономерами , т.е. состоять из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Структурно-функциональная организация ферментов

В составе фермента выделяют области, выполняющие различную функцию:

1. Активный центр – комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом располагаются аминокислоты, значительно удаленные друг от друга в линейной цепи. В активном центре выделяют два участка:

  • якорный (контактный, связывающий) – отвечает за связывание и ориентацию субстрата в активном центре,
  • каталитический – непосредственно отвечает за осуществление реакции.
Схема строения ферментов

У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц. Также две и более субъединицы могут формировать один активный центр.

У сложных ферментов в активном центре обязательно расположены функциональные группы кофактора.

Схема формирования сложного фермента

2. Аллостерический центр (allos – чужой) – центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции.

Аллостерические ферменты являются полимерными белками, активный и регуляторный центры находятся в разных субъединицах.

Схема строения аллостерического фермента

В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество (см "Регуляция активности ферментов ").

Изоферменты

Изоферменты – это молекулярные формы одного и того же фермента, возникшие в результате небольших генетических различий в первичной структуре фермента, но катализирующие одну и ту же реакцию . Изоферменты отличаются сродством к субстрату, максимальной скоростью катализируемой реакции, чувствительностью к ингибиторам и активаторам, условиями работы (оптимум pH и температуры).

Как правило, изоферменты имеют четвертичную структуру, т.е. состоят из двух или более субъединиц. Например, димерный фермент креатинкиназа (КК) представлен тремя изоферментными формами, составленными из двух типов субъединиц: M (англ. muscle – мышца) и B (англ. brain – мозг). Креатинкиназа-1 (КК-1) состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 (КК-2) – по одной М- и В-субъединице, активна в миокарде, креатинкиназа-3 (КК-3) содержит две М-субъединицы, специфична для скелетной мышцы. Определение активности разных изоферментов КК в сыворотке крови имеет .

Также существует пять изоферментов лактатдегидрогеназы (роль ЛДГ) – фермента, участвующего в обмене глюкозы. Отличия между ними заключаются в разном соотношении субъединиц Н (англ. heart – сердце) и М (англ. muscle – мышца). Лактатдегидрогеназы типов 1 (Н 4) и 2 (H 3 M 1) присутствуют в тканях с аэробным обменом (миокард, мозг, корковый слой почек), обладают высоким сродством к молочной кислоте (лактату) и превращают его в пируват. ЛДГ-4 (H 1 M 3) и ЛДГ-5 (М 4) находятся в тканях, склонных к анаэробному обмену (печень, скелетные мышцы, кожа, мозговой слой почек), обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях с промежуточным типом обмена (селезенка, поджелудочная железа, надпочечники, лимфатические узлы) преобладает ЛДГ-3 (H 2 M 2). Определение активности разных изоферментов ЛДГ в сыворотке крови имеет клинико-диагностическое значение .

Еще одним примером изоферментов является группа гексокиназ , которые присоединяют фосфатную группу к моносахаридам гексозам и вовлекают их в реакции клеточного метаболизма. Из четырех изоферментов выделяется гексокиназа IV (глюкокиназа ), которая отличается от остальных изоферментов высокой специфичностью к глюкозе, низким сродством к ней и нечувствительностью к ингибированию продуктом реакции.

0

История развития науки о ферментах

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т. е. в мягких условиях. Вещества, котopыe окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном (изолированном от воздуха) виде, так и на воздухе в присутствии кислорода. Например, мясные и рыбные консервы, пастеризованное молоко, сахар, крупы не разлагаются при довольно длительном хранении. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов.

Ферменты - это специфические белки, входящие в состав всех клеток и тканей живых организмов, играющие роль биологических катализаторов. О ферментах люди узнали давно. Еще в начале прошлого века в Петербурге К. С. Кирхгоф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. А практическое применение ферментативных процессов было известно с незапамятных времен. Это и сбраживание винограда, и закваска при приготовлении хлеба, и сыроварение, и многое другое.

Сейчас в разных учебниках, пособиях и в научной литературе применяются два понятия: «ферменты» и «энзимы». Эти названия идентичны. Они обозначают одно и то же - биологические катализаторы. Первое слово переводится как «закваска», второе - «в дрожжах».

Долгое время не представляли, что же происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. И только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка «начинена» ферментами, способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно «обитающие» вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т. е. они «организованы». А «неорганизованные» катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление «живых» ферментов и «неживых» энзимов объяснялось влиянием виталистов, борьбой материализма и идеализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратится и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М. М. Манассеина разрушила дрожжевые клетки, растирая их с речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Этот простой и убедительный опыт русского врача остался без должного внимания в царской России. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5·10 6 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

Работы А. Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представлениям в теории биологического катализа, а термины «фермент» и «энзим» стали применять как равнозначные.

В наши дни ферментология - это самостоятельная наука. Выделено и изучено около 2000 ферментов. Вклад в эту науку внесли советские ученые - наши современники А. Е. Браунштейн, В. Н. Орехович, В. А. Энгельгард, А. А. Покровский и др.

Химическая природа ферментов

В конце прошлого века было высказано предположение, что ферменты - это белки или какие-то вещества, очень похожие на белки. Потеря активности фермента при нагревании очень напоминает тепловую денатурацию белка. Диапазон температур при денатурации и при инактивации одинаков. Как известно, денатурация белка может быть вызвана не только нагреванием, но и действием кислот, солей тяжелых металлов, щелочей, длительным облучением ультрафиолетовыми лучами. Эти же химические и физические факторы приводят к потере активности фермента.

В растворах ферменты, как и белки, ведут себя под действием электрического тока сходным образом: молекулы движутся к катоду или аноду. Изменение концентрации водородных ионов в растворах белков или ферментов приводит к накоплению ими положительного или отрицательного заряда. Это доказывает амфотерный характер ферментов и тоже подтверждает их белковую природу. Еще одно свидетельство белковой природы ферментов - они не проходят через полупропицаемые мембраны. Это также доказывает их большую молекулярную массу. Но если ферменты - это белки, то при дегидратации их активность не должна уменьшаться. Опыты подтверждают правильность такого предположения.

Интересный опыт был проведен в лаборатории И. П. Павлова. Получая желудочный сок через фистулу у собак, сотрудники обнаружили, что, чем больше белка в соке, тем больше его активность, т. е. определяемый белок и есть фермент желудочного сока.

Таким образом, явления денатурации и подвижности в электрическом поле, амфотерность молекул, высокомолекулярная природа, способность осаждаться из раствора при действии водоотнимающих средств (ацетон или спирт) доказывают белковую природу ферментов.

К настоящему времени этот факт установлен многими, еще более тонкими физическими, химическими или биологическими методами.

Мы уже знаем, что белки бывают очень разные по составу и прежде всего они могут быть простыми или сложными. К каким же белкам относятся известные ныне ферменты?

Ученые различных стран установили, что многие ферменты - это простые белки. Это значит, что при гидролизе молекулы этих ферментов распадаются только до аминокислот. Ничего, кроме аминокислот, в гидролизате таких белков-ферментов обнаружить не удается. К простым ферментам относятся пепсин - фермент, переваривающий белки в желудке и содержащийся в желудочном соке, трипсин - фермент поджелудочного сока, папаин - растительный фермент, уреаза и др.

В сложные ферменты входят, кроме аминокислот, вещества, имеющие небелковую природу. Например, окислительно-восстановительные ферменты, встроенные в митохондрию, содержат, кроме белковой части, атомы железа, меди и другие термостабильные группы. Небелковой частью фермента могут быть и более сложные вещества: витамины, нуклеотиды (мономеры нуклеиновых кислот), нуклеотиды с тремя фосфорными остатками и т. д. Условились называть в таких сложных белках небелковую часть - кофермент, а белковую- апофермент.

Отличие ферментов от небиологических катализаторов

В школьных учебниках и пособиях по химии подробно разбирается действие катализаторов, дается представление об энергетическом барьере, энергии активации. Напомним только, что роль катализаторов заключается в их способности активировать молекулы веществ, вступающих в реакцию. Это приводит к снижению энергии активации. Реакция идет не в один, а в несколько этапов с образованием промежуточных соединений. Катализаторы не изменяют направление реакции, а только влияют на скорость достижения состояния химического равновесия. В катализируемой реакции всегда затрачивается меньше энергии по сравнению с некатализируемой. В ходе реакции фермент меняет свою упаковку, «напрягается» и по окончании реакции принимает исходную структуру, возвращается к первоначальной форме.

Ферменты те же катализаторы. Им свойственны все законы катализа. Но ферменты - белки, и это сообщает им особые свойства. Что же общего у ферментов с привычными для нас катализаторами, например платиной, оксидом ванадия (V) и другими неорганическими ускорителями реакций, а что их отличает?

Один и тот же неорганический катализатор может применяться в разных производствах. А фермент катализирует только одну реакцию или один вид реакции, т. е. он более специфичен, чем неорганический катализатор.

Температура всегда влияет на скорости химических реакций. Большинство реакций с неорганическими катализаторами идет при очень высоких температурах. При повышении температуры скорость реакции, как правило, увеличивается (рис. 1). Для ферментативных реакций это увеличение ограничено определенной температурой (температурный оптимум). Дальнейшее повышение температуры вызывает изменения в молекуле фермента, приводящие к уменьшению скорости реакции (рис. 1). Но некоторые ферменты, например ферменты микроорганизмов, обнаруженных в воде горячих природных источников, не только выдерживают температуры, близкие к точке кипения воды, но и даже, проявляют свою максимальную активность. Для большинства же ферментов температурный оптимум близок к 35-45 °С. При более высоких температурах их активность уменьшается, а затем происходит полная тепловая денатурация.

Рис. 1. Влияние температуры на активность ферментов: 1 - увеличение скорости реакции, 2 - уменьшение скорости реакции.

Многие неорганические катализаторы проявляют свою максимальную эффективность в сильнокислой или сильно-щелочной среде. В отличие от них ферменты активны только при физиологических значениях кислотности раствора, только при такой концентрации ионов водорода, которая совместима с жизнью и нормальным функционированием клетки, органа или системы.

Реакции с участием неорганических катализаторов протекают, как правило, при высоких давлениях, а ферменты работают при нормальном (атмосферном) давлении.

И самым удивительным отличием фермента от других катализаторов является то, что скорость реакций, катализируемых ферментами, в десятки тысяч, а иногда и в миллионы раз выше той, которая может быть достигнута при участии неорганических катализаторов.

Известный всем пероксид водорода, применяемый в быту как отбеливающее и дезинфицирующее вещество, без катализаторов разлагается медленно:

В присутствии неорганического катализатора (солей железа) эта реакция идет несколько быстрее. А каталаза (фермент, присутствующий практически во всех клетках) разрушает пероксид водорода с невообразимой скоростью: одна молекула каталазы расщепляет в одну минуту более 5 млн. молекул Н 2 О 2 .

Универсальное распространение каталазы в клетках всех органов аэробных организмов и высокая активность этого фермента объясняются тем, что пероксид водорода - это мощный клеточный яд. Он получается в клетках как побочный продукт многих реакций, но на страже стоит фермент каталаза, который сейчас же разрушает пероксид водорода на безвредные кислород и воду.

Активный центр фермента

Обязательным этапом в катализируемой реакции является взаимодействие фермента с тем веществом, превращение которого он катализирует,- с субстратом: образуется фермент-субстратный комплекс. В приведенном выше примере пероксид водорода - это субстрат для действия каталазы.

Интересным оказывается то, что в ферментативных реакциях молекула субстрата во много раз меньше, чем молекула белка-фермента. Следовательно, субстрат не может контактировать со всей огромной молекулой фермента, а только с каким-то ее небольшим участком или даже отдельной группой, атомом. Для подтверждения этого предположения ученые отщепляли от фермента одну или несколько аминокислот, и это не влияло или почти не влияло на скорость катализируемой реакции. Но отщепление отдельных определенных аминокислот или группы приводило к полной потере каталитических свойств фермента. Так сформировалось представление об активном центре фермента.

Активный центр - это такой участок белковой молекулы, который обеспечивает соединение фермента с субстратом и дает возможность для дальнейших превращений субстрата. Были изучены некоторые активные центры разных ферментов. Это или функциональная группа (например, ОН-группа серина), или отдельная аминокислота. Иногда для обеспечения каталитического действия нужно несколько аминокислот в определенном порядке.

В составе активного центра выделяют различные по своим функциям участки. Одни участки активного центра обеспечивают сцепление с субстратом, прочный контакт с ним. Поэтому их называют якорными или контактными участками. Другие выполняют собственно каталитическую функцию, активируют субстрат - каталитические участки. Такое условное разделение активного центра помогает более точно представить механизм каталитической реакции.

Тип химической связи в фермент-субстратных комплексах тоже изучался. Вещество (субстрат) удерживается на ферменте при участии самых различных типов связей: водородных мостиков, ионных, ковалентных, донорно-акцепторных связей, ван-дер-ваальсовых сил сцепления.

Деформация молекул фермента в растворе приводит к появлению его изомеров, отличающихся третичной структурой. Иными словами, фермент ориентирует свои функциональные группы, входящие в активный центр, так, чтобы проявилась наибольшая каталитическая активность. Но и молекулы субстрата также могут деформироваться, «напрягаться» при взаимодействии с ферментом. Эти современные представления о фермент-субстратном взаимодействии отличаются от господствовавшей ранее теории Э. Фишера, который считал, что молекула субстрата точно соответствует активному центру фермента и подходит к нему как ключ к замку.

Свойства ферментов

Важнейшим свойством ферментов является преимущественное ускорение одной из нескольких теоретически возможных реакций. Это позволяет субстратам выбрать наиболее выгодные для организма цепочки превращений из целого ряда возможных путей.

В зависимости от условий ферменты способны катализировать как прямую, так и обратную реакции. Например, пировиноградная кислота под влиянием фермента лактатдегидрогеназы превращается в конечный продукт брожения - молочную кислоту. Этот же фермент катализирует и обратную реакцию, и само название он получил не по прямой, а по обратной реакции. Обе реакции происходят в организме при разных условиях:

Это свойство ферментов имеет большое практическое значение.

Другое важное свойство ферментов - термолабильность, т. е. высокая чувствительность к изменениям температуры. Мы уже говорили, что ферменты являются белками. Для большинства из них температура свыше 70 °С приводит к денатурации и потере активности. Из курса химии известно, что повышение температуры на 10 °С приводит к увеличению скорости реакции в 2-3 раза, что характерно и для ферментативных реакций, но до определенного предела. При температурах, близких к 0 °С, скорость ферментативных реакций замедляется до минимума. Это свойство широко используется в различных отраслях народного хозяйства, особенно в сельском хозяйстве и медицине. Например, все существующие сейчас способы консервации почки перед ее пересадкой больному включают охлаждение этого органа, чтобы снизить интенсивность биохимических реакций и продлить время жизни почки до ее пересадки человеку. Такой прием сохранил здоровье и спас жизнь десяткам тысяч людей в мире.

Рис. 2. Влияние pH на активность ферментов.

Одним из важнейших свойств белков-ферментов является их чувствительность к реакции среды, концентрации водородных ионов или гидроксид-ионов. Ферменты активны только в узком интервале кислотности или щелочности среды (pH). Например, активность пепсина в полости желудка максимальна при pH около 1 -1,5. Снижение кислотности приводит к глубокому нарушению пищеварительного акта, недоперевариванию пищи и тяжелым осложнениям. Из курса биологии вам известно, что пищеварение начинается уже в ротовой полости, где присутствует амилаза слюны. Оптимальное значение pH для нее 6,8-7,4. Для разных ферментов пищеварительного тракта характерны большие различия в оптимуме pH (рис. 2). Изменение реакции среды приводит к изменению зарядов на молекуле фермента или даже в его активном центре, вызывая снижение или полную потерю активности.

Следующим важным свойством является специфичность действия фермента. Каталаза расщепляет только пероксид водорода, уреаза - только мочевину H 2 N-СО-NH 2 , т. е. фермент катализирует превращение только одного субстрата, только его молекулу он «узнает». Такая специфичность считается абсолютной. Если фермент катализирует превращение нескольких субстратов, имеющих одинаковую функциональную группу, то такая специфичность называется групповой. Например, фосфатаза катализирует отщепление остатка фосфорной кислоты:

Разновидностью специфичности является чувствительность фермента только к одному изомеру - стерео-химическая специфичность.

Ферменты влияют на скорость превращения различных веществ. Но и на ферменты влияют некоторые вещества, резко изменяя их активность. Вещества, которые повышают активность ферментов, активизируют их, называются активаторами, а угнетающие их - ингибиторами. Ингибиторы могут подействовать на фермент необратимо. После их действия фермент уже никогда не может катализировать свою реакцию, так как его структура будет сильно изменена. Так действуют на фермент соли тяжелых металлов, кислоты, щелочи. Обратимый ингибитор может быть удален из раствора, и фермент вновь приобретает активность. Такое обратимое ингибирование часто протекает по конкурентному типу, т. е. за активный центр борются субстрат и похожий на него ингибитор. Снять такое ингибирование можно, если увеличить концентрацию субстрата и вытеснить ингибитор с активного центра субстратом.

Важным свойством многих ферментов является то, что они находятся в тканях и клетках в неактивной форме (рис. 3). Неактивная форма ферментов называется проферментом. Классическими его примерами являются неактивные формы пепсина или трипсина. Существование неактивных форм ферментов имеет большое биологическое значение. Если бы пепсин или трипсин вырабатывались сразу в активной форме, то это приводило бы к тому, что, например, пепсин «переваривал» стенку желудка, т. е. желудок «переваривал» сам себя. Такого не происходит потому, что пепсин или трипсин становятся активными только после попадания в полость желудка или в тонкий кишечник: от пепсина под действием соляной кислоты, содержащейся в желудочном соке, отщепляется несколько аминокислот, и он приобретает способность расщеплять белки. А сам желудок предохранен теперь от действия пищеварительных ферментов слизистой оболочкой, выстилающей его полость.

Рис. 3 Схема превращения трипсиногена в активный трипсин: А - трипсиноген; Б - трипсин; 1 - место отрыва пептида; 2 - водородные связи; 3 - дисульфидный мостик; 4 - пептид, отщепленный при активации.

Процесс активации фермента идет, как правило, одним из четырех путей, представленных на рисунке 4. В первом случае отщепление пептида от неактивного фермента «открывает» активный центр и делает фермент активным.

Рис. 4 Пути активации ферментов (штриховкой отмечена молекула субстрата):

1 - отщепление от профермента небольшого участка (пептида) и превращение неактивного профермента в активный фермент; 2 - образование дисульфидных связей из SH-групп, освобождающее активный центр; 3 - образование комплекса белка с металлами, активирующее фермент: 4 образование комплекса фермента с каким-нибудь веществом (при этом освобождается доступ к активному центру).

Второй путь представляет собой образование дисульфидных S-S-мостиков, делающих доступным активный центр. В третьем случае присутствие металла активирует фермент, который может работать только в комплексе с этим металлом. Четвертый путь иллюстрирует активацию каким-то веществом, которое связывается с периферическим участком белковой молекулы и деформирует фермент таким образом, чтобы облегчить доступ субстрата к активному центру.

В последние годы обнаружен еще один способ регуляции активности ферментов Выяснилось, что один фермент, например лактатде-гидрогеназа, может находиться в нескольких молекулярных формах, отличающихся между собой, хотя они все катализируют одну реакцию. Такие различные по составу молекулы фермента, которые катализируют одну и ту же реакцию, встречаются даже внутри одной и той же клетки. Их называют изоферментами, т. е. изомерами фермента. У названной уже лактатдегидрогеназы найдено пять различных изоферментов. Какова роль нескольких форм одного фермента? Видимо, организм «подстраховывает» некоторые особенно важные реакции, когда при изменении условий в клетке работает то одна, то другая форма изофермента, и обеспечивает необходимую скорость и направление течения процесса.

И еще одно важное свойство ферментов. Часто они функционируют в клетке не отдельно друг от друга, а организованы в виде комплексов - ферментных систем (рис. 5): продукт предыдущей реакции - субстрат для последующей. Эти системы встроены в клеточные мембраны и обеспечивают быстрое направленное окисление вещества, «перебрасывая» его от фермента к ферменту. Синтетические процессы в клетке идут в подобных же ферментных системах.

Классификация ферментов

Круг вопросов, изучаемых ферментологией, широк. Количество ферментов, применяемых в здравоохранении, сельском хозяйстве, микробиологии и других отраслях науки и практики, велико. Это создавало трудность при характеристике ферментативных реакций, так как один и тот же фермент можно назвать или по субстрату, или по типу катализируемых реакций, или старым термином,прочно вошедшим в литературу: например пепсин, трипсин, каталаза.

Рис. 5. Предполагаемая структура мультиферментного комплекса, синтезирующего жирные кислоты (семь ферментных субъединиц отвечают за семь химических реакций).

Поэтому в 1961 г. Международный биохимический съезд в Москве утвердил классификацию ферментов, в основу которой положен тип реакции, катализируемой данным ферментом. В названии фермента обязательно присутствует название субстрата, т. е. того соединения, на которое воздействует данный фермент, и окончание -аза. Например, аргиназа катализирует гидролиз аргинина.

По этому принципу все ферменты были разделены на шесть классов.

1. Оксидоредуктазы-ферменты, катализирующие окислительно-восстановительные реакции, например каталаза:

2. Трансферазы - ферменты, катализирующие перенос атомов или радикалов, например метилтрансферазы, переносящие СНз-группу:

3. Гидролазы - ферменты, разрывающие внутримолекулярные связи путем присоединения молекул воды, например фосфатаза:

4. Лиазы - ферменты, отщепляющие от субстрата ту или иную группу без присоединения воды, негидролитическим путем, например отщепление карбоксильной группы декарбоксилазой:

5. Изомеразы - ферменты, катализирующие превращение одного изомера в другой:

Глюкозо-6-фосфат-›глюкозо-1-фосфат

6. Ферменты, катализирующие реакции синтеза, например синтез пептидов из аминокислот. Этот класс ферментов носит название синтетаз.

Каждый фермент предложили закодировать шифром из четырех цифр, где первая из них обозначает номер класса, а остальные три характеризуют более подробно свойства фермента, его подкласс и индивидуальный номер в каталоге.

В качестве примера классификации ферментов приведем четырехзначный код, присвоенный пепсину,- 3.4.4Л. Цифра 3 обозначает класс фермента - гидролазы. Следующая цифра 4 кодирует подкласс пептидгидролаз, т. е. тех ферментов, которые гидролизуют именно пептидные связи. Еще одна цифра 4 обозначает под-подкласс, называемый пептидилпептидгидролазами. В этот подподкласс входят уже индивидуальные ферменты, и первым в нем значится пепсин, которому и присвоен порядковый номер 1.

Так получается его код - 3.4.4.1. Точки приложения действия ферментов класса гидролаз показаны на рисунке 6.

Рис. 6. Расщепление пептидных связей различными протеолитнческими ферментами.

Действие ферментов

Обычно ферменты выделяют из различных объектов животного, растительного или микробного происхождения и изучают их действие вне клетки и организма. Эти исследования очень важны для понимания механизма действия ферментов, изучения их состава, особенностей катализируемых ими реакций. Но полученные таким образом сведения нельзя механически непосредственно переносить на деятельность ферментов в живой клетке. Вне клетки трудно воспроизвести те условия, в которых работает фермент, например в митохондрии или лизосоме. К тому же не всегда известно, сколько из имеющихся молекул фермента участвует в реакции - все или только какая-то их часть.

Почти всегда оказывается, что клетка содержит тот или иной фермент, по содержанию превышающий в несколько десятков раз необходимое количество для осуществления нормального обмена веществ. Обмен веществ различен по интенсивности в разные периоды жизни клетки, однако ферментов в ней значительно больше, чем того требовал бы самый максимальный уровень обмена веществ. Например, в состав клеток сердечной мышцы входит столько цитохрома с, которое могло бы осуществить окисление, в 20 раз большее, чем максимальное потребление кислорода сердечной мышцей. Позднее были обнаружены вещества, которые могут «выключать» часть молекул ферментов. Это так называемые тормозящие факторы. Для понимания механизма действия ферментов важно и то, что в клетке они находятся не просто в растворе, а встроены в структуру клетки. Сейчас уже известно, какие ферменты вмонтированы в наружную мембрану митохондрии, какие встроены во внутреннюю, какие связаны с ядром, лизосомами и другими субклеточными структурами.

Близкое «территориальное» расположение фермента, катализирующего первую реакцию, к ферментам, катализирующим вторую, третью и последующие реакции, сильно влияет на суммарный результат их действия. Например, в митохондрии вмонтирована цепь ферментов, передающих электроны на кислород,- цитохромная система. Она катализирует окисление субстратов с образованием энергии, которая аккумулируется в АТФ.

При извлечении ферментов из клетки слаженность их совместной работы нарушается. Поэтому изучать работу ферментов стараются без разрушения тех структур, в которые встроены их молекулы. Например, если срез ткани подержать в растворе субстрата, а затем обработать реактивом, который с продуктами реакции даст окрашенный комплекс, то в микроскопе будут четко видны окрашенные участки клетки: в этих участках был локализован (расположен) фермент, который расщеплял субстрат. Так было установлено, в каких именно клетках желудка содержится пепсиноген, из которого получается фермент пепсин.

Сейчас широко распространен другой метод, который позволяет установить локализацию ферментов,- разделительное центрифугирование. Для этого исследуемую ткань (например, кусочки печени лабораторных животных) измельчают, а затем готовят из нее кашицу в растворе сахарозы. Смесь переносят в пробирки и вращают их с большими скоростями в центрифугах. Различные клеточные элементы в зависимости от их массы и размеров распределяются в плотном растворе сахарозы при вращении примерно следующим образом:

Для получения тяжелых ядер требуется относительно небольшое ускорение (меньшее число оборотов). После отделения ядер, увеличив число оборотов, последовательно осаждают митохондрии, микросомы, получают цитоплазму. Теперь активность ферментов можно изучать в каждой из выделенных фракций. Оказывается, что большинство из известных ферментов локализованы преимущественно в той или иной фракции. Например, фермент альдолаза локализован в цитоплазме, а фермент, окисляющий капроновую кислоту,- преимущественно в митохондриях.

При повреждении мембраны, в которую встроены ферменты, комплексные взаимосвязанные процессы не протекают, т. е. каждый фермент может действовать только сам по себе.

Клетки растений и микроорганизмов, как и клетки животных, содержат очень похожие клеточные фракции. Например, пластиды растений по ферментному набору напоминают митохондрии. В микроорганизмах обнаружены зерна, напоминающие рибосомы и тоже содержащие большие количества рибонуклеиновой кислоты. Ферменты, входящие в состав животных, растительных и микробных клеток, обладают сходным действием. Например, гиалуронидаза облегчает микробам проникновение в организм, способствуя разрушению клеточной стенки. Этот же фермент обнаружен в различных тканях животных организмов.

Получение и применение ферментов

Ферменты находятся во всех тканях животных и растений. Однако количество одного и того же фермента в разных тканях и прочность связи фермента с тканью неодинаковы. Поэтому практически его получение не всегда оправдано.

Источником получения ферментов могут быть пищеварительные соки человека и животных. В соках относительно мало посторонних примесей, клеточных элементов и других компонентов, от которых надо избавляться при получении чистого препарата. Это почти чистые растворы ферментов.

Из тканей получить фермент труднее. Для этого ткань измельчают, клеточные структуры разрушают, растирая измельченную ткань с песком, или обрабатывают ультразвуком. При этом ферменты «вываливаются» из клеток и мембранных структур. Их теперь очищают и отделяют друг от друга. Для очистки используют различную способность ферментов разделяться на хроматографических колонках, неодинаковую их подвижность в электрическом поле, осаждение их спиртом, солями, ацетоном и другие методы. Так как большинство ферментов связано с ядром, митохондриями, рибосомами или другими субклеточными структурами, сначала выделяют центрифугированием эту фракцию, а затем из нее извлекают фермент

Разработка новых методов очистки позволила получить ряд кристаллических ферментов в очень чистом виде, которые могут храниться годами.

Сейчас уже невозможно установить, когда люди впервые применили фермент, но можно с большой уверенностью утверждать, что это был фермент растительного происхождения. Люди давно обратили внимание на полезность того или иного растения не только как пищевого продукта. Например, аборигены Антильских островов издавна использовали сок дынного дерева для лечения язв и других кожных заболеваний.

Рассмотрим более подробно особенности получения и отрасли применения ферментов на примере одного из хорошо известных ныне растительных биокатализаторов - папаина. Этот фермент содержится в млечном соке во всех частях тропического плодового дерева папайи - гигантской древовидной травы, достигающей 10 м. Ее плоды похожи по форме и вкусу на дыню и содержат большое количество фермента папаина. Еще в начале XVI в. испанские мореплаватели обнаружили это растение в естественных условиях в Центральной Америке. Затем его завезли в Индию, а оттуда во все тропические страны. Васко да Гама, увидевший папайю в Индии, назвал ее золотым деревом жизни, а Марко Поло сказал, что папайя - это «дыня, вскарабкавшаяся на дерево». Мореплаватели знали, что плоды дерева спасают от цинги и дизентерии.

В нашей стране папайя растет на Черноморском побережье Кавказа, в ботаническом саду Академии наук России в специальных теплицах. Сырье для фермента - млечный сок - получают из надрезов на кожице плода. Затем сок сушат в лаборатории в вакуумных сушильных шкафах при невысоких температурах (не более 80 °С). Высушенный продукт растирают и хранят в стерильной упаковке, залитой парафином. Это уже достаточно активный препарат. Ферментативную активность его можно оценить по количеству расщепленного за единицу времени белка казеина. За одну биологическую единицу активности папаина принимают такое количество фермента, которого при введении в кровь достаточно для появления симптома «свисания ушей» у кролика массой 1 кг. Этот феномен происходит потому, что папаин начинает действовать на коллагеновые белковые нити в ушах кролика.

Папаин обладает целым спектром свойсте: протеолитическим, противовоспалительным, антикоагуляционным (препятствующим свертыванию крови), дегидратационным, болеутоляющим и бактерицидным. Он разрушает белки до полипептидов и аминокислот. Причем это расщепление идет глубже, чем при действии других ферментов животного и бактериального происхождения. Особенностью папаина является его способность быть активным в широком интервале pH и при больших колебаниях температуры, что особенно важно и удобно для широкого применения этого фермента. А если к тому же учесть, что для получения ферментов, сходных по действию с папаином (пепсин, трипсин, лидаза), требуются кровь, печень, мышцы или другие ткани животных, то преимущество и экономическая эффективность растительного фермента папаина несомненны.

Области применения папаина очень разнообразны. В медицине он используется для обработки ран, где способствует расщеплению белков поврежденных тканей и очищает раневую поверхность. Незаменим папаин при лечении различных заболеваний глаз. Он вызывает рассасывание помутневших структур органа зрения, делая их прозрачными. Известно положительное действие фермента при заболеваниях органов пищеварения. Хорошие результаты получены при применении папаина для лечения кожных болезней, ожогов, а также в невропатологии, урологии и других отраслях медицины.

Кроме медицины, большое количество этого фермента расходуется в виноделии и пивоварении. Папаин увеличивает сроки хранения напитков. При обработке папаином мясо становится мягким и быстроусваиваемым, сроки хранения продуктов резко увеличиваются. Шерсть, идущая в текстильную промышленность, после обработки папаином не скручивается и не сопровождается усадкой. Недавно папаин начали применять в кожевенном производстве. Кожаные изделия после обработки ферментом становятся мягкими, эластичными, более прочными и долговечными.

Тщательное изучение некоторых неизлечимых ранее болезней привело к необходимости вводить в организм недостающие ферменты для замены тех, активность которых снижена. Можно было бы ввести в организм необходимое количество недостающих ферментов или «добавить» молекулы тех ферментов, которые в органе или ткани снизили свою каталитическую активность. Но на эти ферменты организм реагирует как на чужеродные белки, отторгает их, вырабатывает на них антитела, что в конце концов приводит к быстрому распаду введенных белков. Ожидаемого терапевтического эффекта не будет. Вводить ферменты с пищей тоже нельзя, так как пищеварительные соки их «переварят» и они потеряют свою активность, распадутся до аминокислот, не дойдя до клеток и тканей. Введение ферментов прямо в кровоток приводит их к разрушению тканевыми протеазами. Устранить эти трудности удается, применяя иммобилизованные ферменты. В основе принципа иммобилизации лежит способность ферментов «привязываться» к стабильному носителю органической или неорганической природы. Примером химического связывания фермента с матрицей (носителем) является образование прочных ковалентных связей между их функциональными группами. Матрицей может быть, например, пористое стекло, содержащее функциональные аминогруппы, к которым химически «привязывают» фермент.

При применении ферментов часто возникает необходимость сравнивать их активности. Как узнать более активный фермент? Как рассчитать активность разных очищенных препаратов? Условились за активность фермента принимать количество субстрата, которое за одну минуту может превратить 1 г ткани, содержащий этот фермент, при 25 °С. Чем больше субстрата переработал фермент, тем он активнее. Активность одного и того же фермента меняется в связи с возрастом, полом, временем суток, состоянием организма, а также зависит от желез внутренней секреции, вырабатывающих гормоны.

Природа почти не ошибается, производя одинаковые белки в течение всей жизни организма и передавая эту строгую информацию о производстве тех же белков из поколения в поколение. Однако иногда в организме появляется измененный белок, в составе которого встречается одна или несколько «лишних» аминокислот или, наоборот, они утрачены. В настоящее время известно много таких молекулярных ошибок. Они объясняются разными причинами и могут вызвать болезненные изменения в организме. Такие болезни, в появлении которых повинны ненормальные молекулы белка, получили в медицине название молекулярных. Например, гемоглобин здорового человека, состоящий из двух полипептидных цепей (а и в), и гемоглобин больного серповидно-клеточной анемией (эритроцит имеет форму серпа) отличаются только тем, что у больных в в-цепи глутаминовая кислота заменена валином. Серповидно-клеточная анемия - это наследственная болезнь. Изменения гемоглобина передаются от родителей потомству.

Болезни, возникающие при изменении активности ферментов, называются ферментопатиями. Они, как правило, наследуются, передаются от родителей детям. Например, при врожденной фенилкетонурии нарушается следующее превращение:

При недостатке фермента фенилаланингидроксилазы фенилаланин не превращается в тирозин, а накапливается, что вызывает расстройство нормальной функции ряда органов, в первую очередь расстройство функции центральной нервной системы. Болезнь развивается с первых дней жизни ребенка, и к шести-семи месяцам жизни появляются ее первые симптомы. В крови и моче таких больных можно обнаружить огромные по сравнению с нормой количества фенилаланина. Своевременное выявление такой патологии и уменьшение приема той пищи, которая содержит много фенилаланина, оказывает положительное лечебное действие.

Другой пример: отсутствие у детей фермента, превращающего галактозу в глюкозу, приводит к накоплению в организме галактозы, которая в больших количествах накапливается в тканях и поражает печень, почки, глаза. Если отсутствие фермента обнаружено своевременно, то ребенка переводят на диету, не содержащую галактозу. Это ведет к исчезновению признаков заболевания.

Благодаря существованию ферментных препаратов расшифровывают структуру белков и нуклеиновых кислот. Без них невозможны производство антибиотиков, виноделие, хлебопечение, синтез витаминов. В сельском хозяйстве применяются стимуляторы роста, которые оказывают действие на активирование ферментативных процессов. Таким же свойством обладают многие лекарственные препараты, которые подавляют или активируют в организме деятельность ферментов.

Без ферментов невозможно представить себе развитие таких перспективных направлений, как воспроизводство химических процессов, происходящих в клетке, и создания на этой основе современной промышленной биотехнологии. Пока еще ни один современный химический завод не способен соперничать с обычным листком растения, в клетках которого с участием ферментов и солнечных лучей из воды и углекислого газа синтезируется огромное число разнообразных сложных органических веществ. При этом в атмосферу выделяется в большом количестве столь необходимый нам для жизни кислород.

Ферментология - молодая и перспективная наука, отделившаяся от биологии и химии и обещающая много удивительных открытий всем, кто решит заняться ею всерьез.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.