Акустика. Основные формулы акустики. Краткая теория акустики Изучает акустика

Акустика - область физики, исследующая упругие колебания и волны от самых низких частот до предельно высоких (10 12 -10 13 Гц). Современная акустика охватывает широкий круг вопросов, в ней выделяют ряд разделов: физическая акустика, которая изучает особенности распространения упругих волн в различных средах, физиологическая акустика, изучающая устройство и работу звуковоспринимающих и звукообразующих органов у человека и животных, и др. В узком смысле слова под акустикой понимают учение о звуке, т.е. об упругих колебаниях и волнах в газах, жидкостях и твердых телах, воспринимаемых человеческим ухом (частоты от 16 до 20 000 Гц).

8.1. ПРИРОДА ЗВУКА. ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Звуковые колебания и волны - частный случай механических колебаний и волн. Однако в связи с важностью акустических понятий для оценки слуховых ощущений, а также в связи с медицинскими приложениями целесообразно некоторые вопросы разобрать специально. Принято различать следующие звуки:

1) тоны, или музыкальные звуки;

2) шумы;

3) звуковые удары.

Тоном называется звук, являющийся периодическим процессом. Если этот процесс гармонический, то тон называется простым или чистым, а соответствующая плоская звуковая волна описывается уравнением (7.45). Основной физической характеристикой чистого тона является частота. Ангармоническому 1 колебанию соответствует сложный тон. Простой тон издает, например, камертон, сложный тон создается музыкальными инструментами, аппаратом речи (гласные звуки) и т.п.

Сложный тон может быть разложен на простые. Наименьшая частота ν ο такого разложения соответствует основному тону, остальные гармоники (обертоны) имеют частоты, равные 2ν ο , 3ν ο и т.д. Набор частот с указанием их относительной интенсивности (амплитуды А) называется акустиче-

1 Ангармоническое - негармоническое колебание.

ским спектром (см. 6.4). Спектр сложного тона линейчатый; на рис. 8.1 показаны акустические спектры одной и той же ноты (ν 0 = 100 Гц), взятой на рояле (а) и кларнете (б). Таким образом, акустический спектр - важная физическая характеристика сложного тона.

Шумом называют звук, отличающийся сложной неповторяющейся временной зависимостью.

Рис. 8.1

К шуму относятся звуки от вибрации машин, аплодисменты, шум пламени горелки, шорох, скрип, согласные звуки речи и т.п.

Шум можно рассматривать как сочетание беспорядочно изменяющихся сложных тонов. Если попытаться с некоторой степенью условности разложить шум в спектр, то окажется, что этот спектр будет сплошным, например спектр, полученный от шума горения бунзе-новской газовой горелки (рис. 8.2).

Звуковой удар - это кратковременное звуковое воздействие: хлопок, взрыв и т.п. Не следует путать звуковой удар с ударной волной (см. 7.10).


1 Строго говоря, в этой формуле под р следует понимать среднюю амплитуду звукового давления.

8.2. ХАРАКТЕРИСТИКИ СЛУХОВОГО ОЩУЩЕНИЯ. ЗВУКОВЫЕ ИЗМЕРЕНИЯ

В 8.1 рассматривались объективные характеристики звука, которые могли быть оценены соответствующими приборами независимо от человека. Однако звук является объектом слуховых ощущений, поэтому оценивается человеком субъективно.

Воспринимая тоны, человек различает их по высоте.

Высота - субъективная характеристика, обусловленная прежде всего частотой основного тона.

В значительно меньшей степени высота зависит от сложности тона и его интенсивности: звук большей интенсивности воспринимается как звук более низкого тона.

Тембр звука почти исключительно определяется спектральным составом.

На рис. 8.1 разные акустические спектры соответствуют разному тембру, хотя основной тон и, следовательно, высота тона одинаковы.

Громкость - еще одна субъективная оценка звука, которая характеризует уровень слухового ощущения.

Несмотря на субъективность, громкость может быть оценена количественно путем сравнения слухового ощущения от двух источников.

В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера-Фехнера: если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Применительно к звуку это означает, что если интенсивность звука принимает ряд последовательных значений, например а1 0 , а 2 1 0 , а 3 1 0 (а - некоторый коэффициент, а >1) и т.д., то соответствующие им ощущения громкости звука Е 0 , 2Е 0 , 3E 0 и т.д.

Математически это означает, что громкость звука пропорциональна логарифму интенсивности звука.

Если действуют два звуковых раздражения с интенсивностями I и I 0 , причем I 0 - порог слышимости, то на основании закона Вебера- Фехнера громкость относительно него связана с интенсивностями следующим образом:

E = klg(I / I,), (8.3)

где k - некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности.

Если бы коэффициент k был постоянным, то из (8.1) и (8.3) следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале громкостей. В этом случае громкость звука, так же как и интенсивность, выражалась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы (8.3).

Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают, т.е. k = 1 и E b = lg(I/I 0), или, по аналогии с (8.2):

Е ф = 10 lg(I/l0). (8.4)

Для отличия от шкалы интенсивности звука в шкале громкости децибелы называют фонами (фон).

Громкость на других частотах можно измерить, сравнивая исследуемый звук со звуком частотой 1 кГц. Для этого с помощью звукового гене-ратора 1 создают звук частотой 1 кГц. Изменяют интенсивность звука до тех пор, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука. Интенсивность звука частотой 1 кГц в децибелах, измеренная по прибору, равна громкости этого звука в фонах.

Для того чтобы найти соответствие между громкостью и интенсивностью звука на разных частотах, пользуются кривыми равной громкости (рис. 8.4). Эти кривые построены на основании средних данных, которые были получены у людей с нормальным слухом при измерениях, проводимых по описанному выше методу.

Нижняя кривая соответствует интенсивностям самых слабых слышимых звуков - порогу слышимости; для всех частот Еф = 0, для 1 кГц интенсивность звука I 0 = 1 пВт/м 2 . Из приведенных кривых видно, что среднее человеческое ухо наиболее чувствительно к частотам 2500- 3000 Гц. Каждая промежуточная кривая соответствует одинаковой громкости, но разной интенсивности звука для разных частот. По отдельной кривой, равной громкости, можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости. Используя совокупность кривых равной громкости, можно найти для разных

1 Звуковым генератором называют электронный прибор, генерирующий электрические колебания с частотами звукового диапазона. Однако сам звуковой генератор не является источником звука. Если же создаваемое им колебание подать на динамик, то возникает звук, тональность которого соответствует частоте генератора. В звуковом генераторе предусмотрена возможность плавного изменения амплитуды и частоты колебаний.

частот громкости, соответствующие определенной интенсивности. Например, пусть интенсивность звука частотой 100 Гц равна 60 дБ. Какова громкость этого звука? На рис. 8.2 находим точку с координатами 100 Гц, 60 дБ. Она лежит на кривой, соответствующей уровню громкости 30 фон, что и является ответом.

Чтобы иметь определенные представления о различных по характеру звуках, приведем их физические характеристики (табл. 8.1).

Таблица 8.1

Метод измерения остроты слуха называют аудиометрией. При аудио-метрии на специальном приборе (аудиометре) определяют порог слухового ощущения на разных частотах; полученная кривая называется ау-диограммой. Сравнение аудиограммы больного человека с нормальной кривой порога слухового ощущения помогает диагностировать заболевание органов слуха.

Для объективного измерения уровня громкости шума используется шумомер. Структурно он соответствует схеме, изображенной на рис. 8.3. Свойства шумомера приближаются к свойствам человеческого уха (см. кривые равной громкости на рис. 8.4), для этого для разных диапазонов уровней громкости используются корректирующие электрические фильтры.

8.3. ФИЗИЧЕСКИЕ ОСНОВЫ ЗВУКОВЫХ МЕТОДОВ ИССЛЕДОВАНИЯ В КЛИНИКЕ

Звук, как и свет, является источником информации, и в этом главное его значение.

Звуки природы, речь окружающих нас людей, шум работающих машин многое сообщают нам. Чтобы представить значение звука для человека, достаточно временно лишить себя возможности воспринимать звук - закрыть уши.

Естественно, звук может быть и источником информации о состоянии внутренних органов человека. Распространенный звуковой метод

диагностики заболеваний - аускультация (выслушивание) - известен еще со II в. до н.э. Для аускультации используют стетоскоп или фонендоскоп. Фонендоскоп (рис. 8.5) состоит из полой капсулы 1 с передающей звук мембраной 2, прикладываемой к телу больного, от нее идут резиновые трубки 3 к уху врача. В полой капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается ау-скультация.

При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. По изменению тонов сердца и появлению шумов можно судить о состоянии сердечной деятельности. Используя аускультацию, можно установить наличие перистальтики желудка и кишечника, прослушать сердцебиение плода.

Для одновременного выслушивания больного несколькими исследователями с учебной целью или при консилиуме используют систему, в которую входят микрофон, усилитель и громкоговоритель или несколько телефонов.

Для диагностики состояния сердечной деятельности применяется метод, подобный аускультации и называемый фонокардиографией (ФКГ). Этот метод заключается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Запись фонокардио-граммы производят с помощью фонокардиографа (рис. 8.6), состоящего из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства. На рис. 8.7 показана нормальная фонокардиограмма.

Принципиально отличным от двух изложенных выше звуковых методов является перкуссия. В этом методе выслушивают звучание отдельных частей тела при простукивании их.


Представим замкнутую полость, заполненную воздухом внутри какого-нибудь тела. Если вызвать в этом теле звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, выделяя и усиливая тон, соответствующий размеру и положению полости.

Схематично тело человека можно представить как совокупность газонаполненных (легких), жидких (внутренние органы) и твердых (кость) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы. Опытный врач по тону перкуторных звуков определяет состояние и топографию внутренних органов.

8.4. ВОЛНОВОЕ СОПРОТИВЛЕНИЕ. ОТРАЖЕНИЕ ЗВУКОВЫХ ВОЛН. РЕВЕРБЕРАЦИЯ

Звуковое давление р зависит от скорости υ колеблющихся частиц среды. Вычисления показывают, что


Таблица 8.2

Используем (8.8) для вычисления коэффициента проникновения звуковой волны из воздуха в бетон и в воду:

Эти данные производят впечатление: оказывается, только очень малая часть энергии звуковой волны проходит из воздуха в бетон и в воду. Во всяком закрытом помещении отраженный от стен, потолков, мебели звук падает на другие стены, полы и пр., вновь отражается и поглощается и постепенно угасает. Поэтому даже после того, как источник звука прекратит действие, в помещении все еще остаются звуковые волны, которые создают гул. Особенно это заметно в больших просторных залах. Процесс постепенного затухания звука в закрытых помещениях после выключения источника называют реверберацией.

Реверберация, с одной стороны, полезна, так как восприятие звука усиливается за счет энергии отраженной волны, но, с другой стороны, чрезмерно длительная реверберация может существенно ухудшить восприятие речи, музыки, так как каждая новая часть текста перекрывается предыдущими. В связи с этим обычно указывают некоторое оптимальное время реверберации, которое учитывается при постройке аудиторий, театральных и концертных залов и т.п. Например, время реверберации заполненного Колонного зала Дома Союзов в Москве равно 1,70 с, заполненного Большого театра - 1,55 с. Для этих помещений (пустых) время реверберации соответственно 4,55 и 2,06 с.

8.5. ФИЗИКА СЛУХА

Слуховая система связывает непосредственный приемник звуковой волны с головным мозгом.

Используя понятия кибернетики, можно сказать, что слуховая система получает, перерабатывает и передает информацию. Из всей слуховой системы для рассмотрения физики слуха выделим наружное, среднее и внутреннее ухо.

Наружное ухо состоит из ушной раковины 1 и наружного слухового прохода 2 (рис. 8.8).


Рис. 8.9

Ушная раковина у человека не играет существенной роли для слуха. Она способствует определению локализации источника звука при его расположении в сагиттальной плоскости. Поясним это. Звук от источника попадает в ушную раковину. В зависимости от положения источника в вертикальной плоскости (рис. 8.9) звуковые волны будут по-разному дифрагировать на ушной раковине из-за ее специфической формы. Это приведет и к разному изменению спектрального состава звуковой волны, попадающей в слуховой проход (более детально вопросы дифракции рассматриваются в 24.6). Человек в результате опыта научился ассоциировать изменение спектра звуковой волны с направлением на источник звука (направления А, Б и В на рис. 8.9).

Обладая двумя звукоприемниками (ушами), человек и животные способны установить направление на источник звука и в горизонтальной плоскости (бинауральный эффект; рис. 8.10). Это объясняется тем, что звук от источника до разных ушей проходит разное расстояние и возникает разность фаз для волн, попадающих в правую и левую ушные раковины. Связь между разностью этих расстояний (δ) и разностью фаз (Δφ) выведена в 24.1 при объяснении интерференции света [см. (24.9)]. Если источник звука находится прямо перед лицом человека, то δ = 0 и Δφ = 0, если источник звука расположен сбоку против одной из ушных раковин, то в другую ушную раковину он попадет с запаздыванием. Будем считать приближенно, что в этом случае δ равно расстоянию между ушными раковинами. По формуле (24.9) можно рассчитать для ν = 1 кГц и δ = 0,15 м разность фаз. Она приблизительно равна 180°.

Различным направлениям на источник звука в горизонтальной плоскости будут соответствовать разности фаз между 0° и 180° (для приведенных выше данных). Считают, что человек с нормальным слухом может фиксировать направления на источник звука с точностью до 3°, этому соответствует разность фаз 6°. Поэтому можно полагать, что чело-

Рис. 8.10

век способен различать изменение разности фаз звуковых волн, попадающих в его уши, с точностью до 6°.

Кроме фазового различия бинауральному эффекту способствует неодинаковость интенсивностей звука у разных ушей, а также акустическая тень от головы для одного уха. На рис. 8.10 схематично показано, что звук от источника попадает в левое ухо в результате дифракции.

Звуковая волна проходит через слуховой проход и частично отражается от барабанной перепонки 3. В результате интерференции падающей и отраженной волн может возникнуть акустический резонанс. Это возникает тогда, когда длина волны в четыре раза больше длины наружного слухового прохода. Длина слухового прохода у человека приблизительно равна 2,3 см; следовательно, акустический резонанс возникает при частоте:

Наиболее существенной частью среднего уха являются барабанная перепонка 3 и слуховые косточки: молоточек 4, наковальня 5 и стремечко 6 с соответствующими мышцами, сухожилиями и связками. Косточки осуществляют передачу механических колебаний от воздушной среды наружного уха к жидкой среде внутреннего. Жидкая среда внутреннего уха имеет волновое сопротивление, приблизительно равное волновому сопротивлению воды. Как было показано (см. 8.4), при прямом переходе звуковой волны из воздуха в воду передается лишь 0,122% падающей интенсивности. Это слишком мало. Поэтому основное назначение среднего уха - способствовать передаче внутреннему уху большей интенсивности звука. Используя технический язык, можно сказать, что среднее ухо согласует волновые сопротивления воздуха и жидкости внутреннего уха.

Система косточек на одном конце молоточком связана с барабанной перепонкой (площадь S 1 = 64 мм 2), на другом - стремечком - с овальным окном 7 внутреннего уха (площадь S 2 = 3 мм 2).

На барабанную перепонку действует звуковое давление р 1 , что обусловливает силу

на 8, называется вестибулярной лестницей. Другой канал идет от круглого окна 9, он называется барабанной лестницей 10. Вестибулярная и барабанная лестницы соединены в области купола улитки посредством маленького отверстия - геликотремы 11. Таким образом, оба эти канала в некотором роде представляют единую систему, наполненную пери-лимфой. Колебания стремечка 6 передаются мембране овального окна 7, от нее перилимфе и «выпячивают» мембрану круглого окна 9. Пространство между вестибулярной и барабанной лестницами называется улитковым каналом 12, он заполнен эндолимфой. Между улитковым каналом и барабанной лестницей вдоль улитки проходит основная (базилярная) мембрана 13. На ней находится кортиев орган, содержащий рецептор-ные (волосковые) клетки, от улитки идет слуховой нерв (на рис. 8.9 эти подробности не показаны).

Кортиев орган (спиральный орган) преобразует механические колебания в электрический сигнал.

Длина основной мембраны около 32 мм, она расширяется и утончается в направлении от овального окна на верхушке улитки (от ширины 0,1 до 0,5 мм). Основная мембрана - весьма интересная для физики структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который представлял основную мембрану аналогично ряду настроенных струн пианино. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонаторной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна распространится волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространится приблизительно до 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм.

На основании этих наблюдений были разработаны теории, согласно которым восприятие высоты тона определяется положением максимума колебания основной мембраны. Таким образом, во внутреннем ухе прослеживается определенная функциональная цепь: колебание мембраны овального окна - колебание перилимфы - сложные колебания основной мембраны - раздражение волосковых клеток (рецепторы кортиева органа) - генерация электрического сигнала.

Некоторые формы глухоты связаны с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сиг-

налы при воздействии механических колебаний. Таким глухим можно помочь, для этого необходимо имплантировать электроды в улитку и на них подавать электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула.

Такое протезирование основной функции улитки (кохлеарное протезирование) разрабатывается в ряде стран. В России кохлеарное протезирование разработано и осуществлено в Российском медицинском университете. Кохлеарный протез показан на рис. 8.12, здесь 1 - основной корпус, 2 - заушина с микрофоном, 3 - вилка электрического разъема для подсоединения к имплантируемым электродам.

8.6. УЛЬТРАЗВУК И БГО ПРИМЕНЕНИЯ В МЕДИЦИНЕ

Ультразвуком (УЗ) называют механические колебания и волны, частоты которых более 20 кГц.

Верхним пределом ультразвуковых частот условно можно считать 10 9 -10 10 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния вещества, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили электромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта (см. 14.7). Обратный пьезоэффект заключа-

ется в механической деформации тел под действием электрического поля. Основной частью такого излучателя (рис. 8.13, а) является пластина или стержень 1 из вещества с хорошо выраженными пьезоэлектрическими свойствами (кварц, сегнетова соль, керамический материал на основе титаната бария и др.). На поверхность пластины в виде проводящих слоев нанесены электроды 2. Если к электродам приложить переменное электрическое напряжение от генератора 3, то пластина благодаря обратному пье-зоэффекту начнет вибрировать, излучая механическую волну соответствующей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. 7.6). Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли - 1,5 МГц и титаната бария - 2,75 МГц.

Приемник УЗ можно создать на основе пьезоэлектрического эффекта (прямой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла (рис. 8.13, б), которая при пьезоэффекте приводит к генерации переменного электрического поля; соответствующее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмотрим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенно меньше длины звуковой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн (см. 24.5) существенно зависит от соотношения длины волн и размеров тел, на которых волна дифрагирует. «Непрозрачное» тело размером 1 м не будет препятствием для звуковой длины с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм, возникнет УЗ-тень. Это позволяет в некоторых случаях не учитывать дифракцию УЗ-волн, рассматривая при преломлении и отражении эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений (см. 8.4). Так, УЗ хорошо отражается на границах мышца-надкостница-кость, на поверхности полых органов и т.д.

Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т.п. (УЗ-локация). При УЗ-локации используют как непрерывное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультразвука до исследуемого объекта и обратно. Зная скорость распространения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет отражаться из-за тонкого слоя воздуха между излучателем и биологическим объектом (см. 8.4). Чтобы исключить воздушный слой, поверхность УЗ-излу-чателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглощение существенно зависят от состояния среды; на этом основано использование ультразвука для изучения молекулярных свойств вещества. Исследования такого рода являются предметом молекулярной акустики.

Как видно из (7.53), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значительной интенсивности даже при сравнительно небольшой амплитуде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (7.12)], что говорит о наличии существенных сил, действующих на частицы в биологических тканях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости - кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходят разогревание вещества, а также ионизация и диссоциация молекул.

Физические процессы, обусловленные воздействием УЗ, вызывают в биологических объектах следующие основные эффекты:

Микровибрации на клеточном и субклеточном уровнях;

Разрушение биомакромолекул;

Перестройку и повреждение биологических мембран, изменение проницаемости мембран (см. гл. 13);

Тепловое действие;

Медико-биологические приложения ультразвука в основном можно разделить на два направления: методы диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы и использование импульсного излучения. Это эхоэнцефалография - определение опухолей и отека головного мозга (на рис. 8.14 показан эхоэнцефалограф «Эхо-12»); ультразвуковая кардиография - измерение размеров сердца в динамике; в офтальмологии - ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта Доплера изучают характер движения сердечных клапанов и измеряют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физиотерапия. На рис. 8.15 показан используемый для этих целей аппарат УТП-ЗМ. На пациента воздействуют ультразвуком с помощью специальной излу-чательной головки аппарата. Обычно для терапевтических целей применяют ультразвук частотой 800 кГц, средняя его интенсивность около 1 Вт/см 2 и меньше.

Первичным механизмом ультразвуковой терапии являются механическое и тепловое действия на ткань.

При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.

Способность ультразвука дробить тела, помещенные в жидкость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарственных веществ, полученные с помощью ультразвука.

В настоящее время разработан новый метод «сваривания» поврежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Губительное воздействие ультразвука на микроорганизмы используется для стерилизации.

Интересно применение ультразвука для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ориентир» можно обнаружить предметы и определять их характер на расстоянии до 10 м.

Перечисленные примеры не исчерпывают всех медико-биологических применений ультразвука, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, например, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии (см. гл. 24).

8.7. ИНФРАЗВУК

Инфразвуком называют механические (упругие) волны с частотами, меньшими тех, которые воспринимает ухо челвоека (20 Гц).

Источниками инфразвука могут быть как естественные объекты (море, землетрясение, грозовые разряды и др.), так и искусственные (взрывы, автомашины, станки и др.).

Инфразвук часто сопровождается слышимым шумом, например в автомашине, поэтому возникают трудности при измерении и исследовании собственно инфразвуковых колебаний.

Для инфразвука характерно слабое поглощение разными средами, поэтому он распространяется на значительное расстояние. Это позволяет по распространению инфразвука в земной коре обнаруживать взрыв на большом удалении его от источника, по измеренным инфра-звуковым волнам прогнозировать цунами и т.д. Так как длина волны инфразвука больше, чем у слышимых звуков, то инфразвуковые волны лучше дифрагируют и проникают в помещения, обходя преграды.

Инфразвук оказывает неблагоприятное влияние на функциональное состояние ряда систем организма: усталость, головная боль, сонливость, раздражение и др. Предполагается, что первичный механизм действия инфразвука на организм имеет резонансную природу. Резонанс наступает при близких значениях частоты вынуждающей силы и частоты собственных колебаний (см. 7.6). Частота собственных колебаний тела человека в положении лежа (3-4 Гц), стоя (5-12 Гц), частота собственных колебаний грудной клетки (5-8 Гц), брюшной полости (3-4 Гц) и т.д. соответствуют частоте инфразвуков.

Снижение уровня интенсивности инфразвуков в жилых, производственных и транспортных помещениях - одна из задач гигиены.

8.8. ВИБРАЦИИ

В технике механические колебания различных конструкций и машин получили название вибраций.

Они оказывают воздействие и на человека, который соприкасается с вибрирующими объектами. Это воздействие может быть как вредным и приводящим в определенных условиях к вибрационной болезни, так и полезным, лечебным (вибротерапия и вибромассаж).

Основные физические характеристики вибраций совпадают с характеристиками механических колебаний тел, это:

Частота колебаний или гармонический спектр ангармонического колебания;

Амплитуда, амплитуда скорости и амплитуда ускорения;

Энергия и средняя мощность колебаний.

Кроме того, для понимания действия вибраций на биологический объект важно представлять себе распространение и затухание колебаний в теле. При исследовании этого вопроса используют модели, состоящие из инерционных масс, упругих и вязких элементов (см. 10.3).

Вибрации являются источником слышимых звуков, ультразвуков и инфразвуков.

Февраль 18, 2016

Мир домашних развлечений довольно разнообразен и может включать в себя: просмотр кино на хорошей домашней кинотеатральной системе; увлекательный и захватывающий игровой процесс или прослушивание музыкальных композиций. Как правило, каждый находит что-то своё в этой области, или сочетает всё сразу. Но какими бы не были цели человека по организации своего досуга и в какую бы крайность не ударялись - все эти звенья прочно связаны одним простым и понятным словом - "звук". Действительно, во всех перечисленных случаях нас будет вести за ручку звуковое сопровождение. Но вопрос этот не так прост и тривиален, особенно в тех случаях, когда появляется желание добиться качественного звучания в помещении или любых других условиях. Для этого не всегда обязательно покупать дорогостоящие hi-fi или hi-end компоненты (хотя будет весьма кстати), а бывает достаточным хорошее знание физической теории, которая способна устранить большинство проблем, возникающих у всех, кто задался целью получить озвучку высокого качества.

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.

Общая теория звука и музыкальная терминология

Что же такое звук ? Это ощущение, которое воспринимает слуховой орган "ухо" (само по себе явление существует и без участия «уха» в процессе, но так проще для понимания), возникающее при возбуждении барабанной перепонки звуковой волной. Ухо в данном случае выступает в роли "приёмника" звуковых волн различной частоты.
Звуковая волна же представляет собой по сути последовательный ряд уплотнений и разряжений среды (чаще всего воздушной среды в обычных условиях) различной частоты. Природа звуковых волн колебательная, вызываемая и производимая вибрацией любых тел. Возникновение и распространение классической звуковой волны возможно в трёх упругих средах: газообразных, жидких и твёрдых. При возникновении звуковой волны в одном из этих типов пространства неизбежно возникают некоторые изменения в самой среде, например, изменение плотности или давления воздуха, перемещение частиц воздушных масс и т.д.

Поскольку звуковая волна имеет колебательную природу, то у неё имеется такая характеристика, как частота. Частота измеряется в герцах (в честь немецкого физика Генриха Рудольфа Герца), и обозначает количество колебаний за период времени, равный одной секунде. Т.е. например, частота 20 Гц обозначает цикл в 20 колебаний за одну секунду. От частоты звука зависит и субъективное понятие его высоты. Чем больше звуковых колебаний совершается за секунду, тем «выше» кажется звучание. У звуковой волны так же имеется ещё одна важнейшая характеристика, имеющая название - длина волны. Длиной волны принято считать расстояние, которое проходит звук определённой частоты за период, равный одной секунде. Для примера, длина волны самого низкого звука в слышимом диапазоне для человека частотой 20 Гц составляет 16,5 метров, а длина волны самого высокого звука 20000 Гц составляет 1,7 сантиметра.

Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц - 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком , звук ниже слышимого диапазона называется инфразвуком . Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

Рассмотрим теорию музыкальных тонов на примере струны, натянутой определённым образом. Такая струна, в зависимости от силы натяжения, будет иметь "настройку" на какую-то одну конкретную частоту. При воздействии на эту струну чем-либо с одной определённой силой, что вызовет её колебания, стабильно будет наблюдаться какой-то один определенный тон звука, мы услышим искомую частоту настройки. Этот звук называется основным тоном. За основной тон в музыкальной сфере официально принята частота ноты "ля" первой октавы, равная 440 Гц. Однако, большинство музыкальных инструментов никогда не воспроизводят одни чистые основные тона, их неизбежно сопровождают призвуки, именуемые обертонами . Тут уместно вспомнить важное определение музыкальной акустики, понятие тембра звука. Тембр - это особенность музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую узнаваемую специфику звучания, даже если сравнивать звуки одинаковой высоты и громкости. Тембр каждого музыкального инструмента зависит от распределения звуковой энергии по обертонам в момент появления звука.

Обертоны формируют специфическую окраску основного тона, по которой мы легко можем определить и узнать конкретный инструмент, а так же чётко отличить его звучание от другого инструмента. Обертоны бывают двух типов: гармонические и негармонические. Гармонические обертоны по определению кратны частоте основного тона. Напротив, если обертоны не кратны и заметно отклоняются от величин, то они называются негармоническими . В музыке практически исключается оперирование некратными обертонами, поэтому термин сводится к понятию "обертон", подразумевая под собой гармонический. У некоторых инструментов, например фортепиано, основной тон даже не успевает сформироваться, за короткий промежуток происходит нарастание звуковой энергии обертонов, а затем так же стремительно происходит спад. Многие инструменты создают так называемый эффект "переходного тона", когда энергия определённых обертонов максимальна в определённый момент времени, обычно в самом начале, но потом резко меняется и переходит к другим обертонам. Частотный диапазон каждого инструмента можно рассмотреть отдельно и он обычно ограничивается частотами основных тонов, который способен воспроизводить данный конкретный инструмент.

В теории звука также присутствует такое понятие как ШУМ. Шум - это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие - интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц - 4000 Гц, который наиболее широко охватывает человеческую речь.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать её как логарифмическую величину и измерять в децибелах (в честь шотландского учёного Александра Грэма Белла). Нижний порог слуховой чувствительности человеческого уха составляет 0 Дб, верхний 120 Дб, он же ещё называется "болевой порог". Верхняя граница чувствительности так же воспринимается человеческим ухом не одинаково, а зависит от конкретной частоты. Звуки низких частот должны обладать гораздо бОльшей интенсивностью, чем высокие, чтобы вызвать болевой порог. Например, болевой порог на низкой частоте 31,5 Гц наступает при уровне силы звука 135 дБ, когда на частоте 2000 Гц ощущение боли появится при уже при 112 дБ. Имеется также понятие звукового давления, которое фактически расширяет привычное объяснение распространение звуковой волны в воздухе. Звуковое давление - это переменное избыточное давление, возникающее в упругой среде в результате прохождения через неё звуковой волны.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе.
Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и "возбудит" барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью. Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс.

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения "вперёд-назад", то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика "вперёд" получается известный уже эффект сжатия воздуха, а при движении динамика "назад" обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны . Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной . Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной . Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое.
Скорость звука в газе зависит в основном от температуры - возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, - чем масса и размер частиц меньше, тем "проводимость" волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции - когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн - это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать "по фазе", а также могут совпадать и спады по "противофазе". Именно так и характеризуются биения звука. Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно. Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при "встрече" таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов). При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление "сложения" или "вычитания" будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком - это частота, на которой труба "резонирует" или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере "помогает" динамику, резонируя на конкретной частоте, их усилия складываются и "выливаются" в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты.
В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо "АЧХ"). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц - 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Распространение звуковых волн, фаза и противофаза

Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.
От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции , т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции . Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн .

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.

Звук - это феномен, волновавший человеческие умы с глубокой древности. Фактически мир разнообразных звуков возник на Земле задолго до появления на ней человеческих существ. Первые звуки раздавались ещё во время зарождения нашей планеты. Они были вызваны мощнейшими ударами, колебаниями материи и бурлением раскалённого вещества.

Звук в природной среде

Когда на планете появились первые животные, у них со временем возникла острая потребность получать как можно больше информации об окружающей действительности. А поскольку звук является одним из главных носителей информации, то у представителей фауны стали происходить эволюционные изменения головного мозга, которые постепенно привели к образованию органов слуха.

Теперь первобытные животные могли получать посредством улавливания звуковых колебаний необходимую информацию об опасности, часто исходящей от невидимых взору объектов. Позднее живые существа научились использовать звуки для других целей. Сфера применения аудиоинформации росла в процессе эволюции самих животных. Звуковые сигналы стали служить средством примитивного общения между ними. Звуками они стали предупреждать друг друга об опасности, также он служил зовом к объединению для существ со стадными инстинктами.

Человек - повелитель звуков

Но лишь человеку удалось научиться в полной мере использовать звук в своих целях. В один прекрасный момент люди столкнулись с необходимостью передачи знаний друг другу и из поколения в поколение. Этим целям человек подчинил многообразие звуков, которые научился со временем издавать и воспринимать. Из этого множества звуков впоследствии возникла речь. Звук стал также наполнением досуга. Люди открыли для себя благозвучность свиста спускаемой тетивы лука, энергичность ритмичных ударов деревянных предметов друг о друга. Так возникли первые, самые простые музыкальные инструменты, а значит, и само музыкальное искусство.

Однако человеческое общение и музыка - не единственные звуки, которые появились на Земле с возникновением людей. Звуками сопровождались и многочисленные трудовые процессы: изготовление различных предметов из камня и дерева. А с появлением цивилизации, с изобретением колеса люди в первый раз столкнулись с проблемой громкого шума. Известно, что уже в древнем мире стук колёс о дороги, вымощенные камнем, нередко становился причиной плохого сна у жителей придорожных домов. В борьбе с этим шумом было изобретено первое средство шумоподавления: на мостовую настилалась солома.

Нарастающая проблема шума

Когда человечество познало пользу железа, проблема шума начала приобретать глобальные масштабы. Изобретя порох, человек создал тем самым источник звука такой мощности, которая достаточна для причинения заметного ущерба его собственному слуховому аппарату. В эпоху промышленной революции среди таких негативных побочных явлений, как загрязнение окружающей среды, истощение природных ресурсов, не последнее место занимает проблема промышленного шума высокой громкости.

Анекдот из жизни

Тем не менее даже в настоящее время не все производители промышленной техники уделяют хоть какое-то внимание данному вопросу. Руководство далеко не всех заводов и фабрик озабочено сохранением здорового слуха у своих подчинённых.

Иногда приходится слышать рассказы, подобные этому. Главный инженер одного из крупных предприятий промышленности распорядился установить в наиболее шумных цехах микрофоны, подсоединённые к громкоговорителям, расположенным снаружи зданий. По его мнению, таким образом микрофоны будут высасывать часть шума наружу. Конечно, при всей комичности данной истории она заставляет задуматься о причинах такой безграмотности в вопросах, касающихся шумоподавления и шумоизоляции. А причина у этого единственная - в учебных заведениях высшего, средне-профессионального и средне-специального уровня образования лишь в последние десятилетия стали вводить специальные курсы по акустике.

Наука о звуке

Первые попытки познания природы звука были предприняты ещё Пифагором, который изучал колебания струны. После Пифагора в течение долгих веков эта область не вызывала никакого интереса у исследователей. Конечно, целый ряд учёных древности занимался построением собственных акустических теорий, но эти научные изыскания не основывались на математических расчётах, а были больше похожи на разрозненные философские рассуждения.

И лишь по прошествии более чем тысячи лет Галилей положил начало новой науке о звуке - акустике. Виднейшими первопроходцами в этой сфере были Рэлей и Гельмгольц. Они создали в девятнадцатом веке теоретическую основу современной акустики. Герман Гельмгольц в основном знаменит своим изучением свойств резонаторов, а Релей стал нобелевским лауреатом благодаря своей фундаментальной работе по теории звука.

Основные направления современной акустики

Многочисленные научные труды по исследованию природы шума и вопросам шумоподавления и шумоизоляции были опубликованы некоторое время спустя. Первые работы в этой области касались в основном шумов, производимых авиационной техникой и наземных транспортом. Но со временем границы этих исследований значительно расширились. На данный момент большинство промышленно-развитых стран имеют свои научно-исследовательские институты, занимающиеся разработкой решения данных проблем.

На сегодняшний день наиболее известны следующие разделы акустики: общая, геометрическая, архитектурная, строительная, психологическая, музыкальная, биологическая, электрическая, авиационная, транспортная, медицинская, ультразвуковая, квантовая, речевая, цифровая. В следующих главах будут рассмотрены некоторые из перечисленных разделов науки о звуке.

Общие положения

Прежде всего, следует дать определение науке, о которой идёт речь в данной статье. Акустика - это область знания о природе звука. Данная наука изучает такие явления, как возникновение, распространение, ощущение звука и различные эффекты, производимые звуком на органы слуха. Как и все прочие науки, акустика имеет свой понятийный аппарат.

Акустика - это наука, считающаяся одной из отраслей физической науки. Вместе с тем она также является междисциплинарной отраслью, то есть имеет тесные связи с другими областями знаний. Наиболее отчётливо прослеживается взаимодействие акустики с механикой, архитектурой, теорией музыки, психологией, электроникой, математикой. Важнейшие формулы акустики касаются свойств распространения звуковых волн в условиях упругой среды: уравнения плоской и стоячей волн, формулы расчёта скорости волн.

Применение в музыке

Музыкальная акустика - отрасль, исследующая музыкальные звуки с точки зрения физики. Данная отрасль тоже является междисциплинарной. В научных трудах по музыкальной акустике активно используются достижения математической науки, музыкальной теории и психологии. Основные понятия этой науки: звуковысотность, динамические и тембральные оттенки используемых в музыке звуков. Данный раздел акустики преимущественно направлен на исследование ощущений, возникающих при восприятии звуков человеком, а также особенностей музыкального интонирования (воспроизведения звуков определённой высоты). Одной из обширнейших тем исследования музыкальной акустики является тема музыкальных инструментов.

Применение на практике

Учёные, занимающиеся теорией музыки, применяли результаты исследований музыкальной акустики для построения концепций музыки на базе естественных наук. Физики и психологи занимались вопросами музыкального восприятия. Отечественные учёные, трудившиеся на этом поприще, работали как над разработкой теоретической базы (Н. Гарбузов известен своей теорией о зонах музыкального восприятия), так и над применением достижений на практике (Л. Термен, А. Володин, Е. Мурзин занимались конструированием электромузыкальных инструментов).

В последние годы всё чаще стали появляться междисциплинарные научные работы, в которых комплексно рассматривается особенность акустики зданий, относящихся к различным архитектурным стилям и эпохам. Данные, полученные при исследованиях в данной сфере, используются при построении методик развития музыкального слуха и техник настройки музыкальных инструментов. Следовательно, можно сделать вывод, что музыкальная акустика - отрасль науки, которая не потеряла своей актуальности на сегодняшний день.

Ультразвук

Далеко не все звуки могут быть восприняты человеческими органами слуха. Ультразвуковая акустика - раздел акустики, изучающий звуковые колебания с диапазоном от двадцати кГц. Звуки такой частоты находятся за гранью человеческого восприятия. Ультразвук подразделяется на три вида: низкочастотный, среднечастотный, высокочастотный. Каждый из видов имеет свою специфику воспроизведения и практического применения. Ультразвуки могут быть созданы не только искусственно. Они нередко встречаются и в живой природе. Так, шум, издаваемый ветром, частично состоит из ультразвука. Также такие звуки воспроизводятся некоторыми животными и улавливаются их органами слуха. Всем известно, что летучая мышь является одним из таких существ.

Ультразвуковая акустика - это отрасль акустики, которая нашла практическое применение в медицине, при различных научных опытах и исследованиях, в военной промышленности. В частности, в начале двадцатого века в России было изобретено устройство для обнаружения подводных айсбергов. Работа этого устройства основывалась на генерации и улавливании ультразвуковых волн. Из данного примера видно, что ультразвуковая акустика - это наука, достижения которой используются на практике уже более ста лет.

Расстановка ударений: АКУ`СТИКА

АКУСТИКА (греч. akustikos - слуховой) - учение о звуке; раздел физики, изучающий свойства, возникновение, распространение и прием упругих волн в газообразных, жидких или твердых средах.

А. - одна из самых древних областей физики - зародилась в связи с потребностью дать объяснение явлениям слуха и речи. Так, еще Эмпедокл (490-430 гг. до н. э.) объяснял распространение и восприятие звуков движениями особого (тонкого) вещества, исходящего из звучащего тела и попадающего в ухо. Аристотель (384-322 гг. до н. э.) уже понимал, что звучащее тело вызывает сжатия н разрежения воздуха, и сумел объяснить процесс возникновения эха. Он четко разграничивал высоту, силу и тембр звука и связывал их с различиями в скорости и количестве движущегося воздуха и с устройством голосового аппарата. Пифагор (6 в. до н. э.) первый сформулировал законы колебания струн.

Этапом в развитии А. стали работы Галилея и Мерсенна (17 в.), к-рые установили количественные законы колебания струн и первыми определили скорость звука в воздухе. Гассенди (17 в.) установил, что скорость звука не зависит от его высоты. Братья Вебер (1825) и Савар (1820) показали, что распространение звука в жидкостях и упругих телах совершается по тем же законам, что и в воздухе. В 1863 г. вышла книга Гельмгольца «Учение о звуковых ощущениях», а в 1877-1878 гг. - труд Релея «Теория звука».

Гельмгольц объяснил физическую природу звуков, исходя из разработанного им метода анализа звуков (резонаторы Гельмгольца), объяснил восприятие звука законами физики.

Новый этап развития А. начался в связи с развитием электронной техники, созданием электронных усилителей, нахождением новых способов генерирования звуков вплоть до весьма высоких частот (миллионы колебаний в секунду). Особенно интенсивно А. стала развиваться в связи с проблемой радио- и телевещания.

Современную А. можно подразделить на общую, или теоретическую, физиологическую, медицинскую, музыкальную, архитектурную, техническую и атмосферную; выделяют также электроакустику и гидроакустику.

Общая , или теоретическая , акустика изучает (теоретически и экспериментально) процессы возникновения и распространения звука (см.), а также методы акустических измерений.

Колеблющееся тело (источник колебаний) создает в окружающей среде зоны попеременного увеличения и уменьшения давления, распространяющиеся в разные стороны в виде упругих колебаний (волн) со скоростями, определяемыми свойствами среды, в к-рой они распространяются. Напр., скорость распространения упругих волн в воздухе при t ° 0° составляет 331 м/сек , в воде - 1440-1500 м/сек , в костной ткани - 3380 м/сек . Упругие колебания характеризуются частотой колебания (f), длиной волны (λ), интенсивностью колебания (I). Частота колебаний определяется в герцах (гц ); 1 гц равен одному колебанию в секунду. Если частота упругих колебаний находится в пределах 16-20000 гц , то они воспринимаются органом слуха человека в виде звука, высота к-рого определяется частотой колебаний; при этом большей частоте соответствуют более высокие звуки.

Сила звука определяется через интенсивность звука или количество звуковой энергии, протекающей через 1 см 2 за 1 сек. Интенсивность колебания максимальна у источника колебаний, убывает с расстоянием.

Колебания ниже 16 и выше 20000 гц (с отклонениями в ту или иную сторону) ухом человека в виде звуков не воспринимаются и носят название инфразвуков (см.) и ультразвуков (см.). Вместе с тем человек через кости черепа способен воспринимать ультразвуки с частотой порядка 100000-150000 гц . Инфразвуковые колебания могут восприниматься организмом вибротактильно (см. Вибрация ). Границы восприятия звуковых волн животными существенно отличаются от указанных цифр (напр., морские свинки, хомяки и нек-рые другие животные воспринимают звуки с частотой до 100000 гц ).

Физиологическая акустика изучает физику и биофизику органов слуха и речи, а также последствия действия упругих колебаний, поскольку последние способны оказывать на биологические объекты (в т. ч. и на организм в целом) механическое, тепловое и физ.-хим. воздействия. Важное значение при этом имеют интенсивность звуковой энергии и частота. Так, напр., при интенсивности звука порядка 10 -4 вт/см 2 наступает болевое ощущение. Интенсивные звуки, лежащие даже ниже порога болевого ощущения, вредно сказываются на здоровье и работоспособности. Продолжительное действие сильного шума может привести к тугоухости (см.), иногда к глухоте (см.) или специфическому повреждению органа слуха в результате воздействия звуков чрезмерной силы (см. Акустическая травма ). Вместе с тем чувствительность уха человека к звукам различной высоты неодинакова. Наибольшую чувствительность ухо имеет к тонам 1000-3000 гц .

Упругие колебания различных диапазонов частот вызывают специфические воздействия, однако для всех диапазонов частот имеется общее в характере их действия: 1) при малых интенсивностях звуковое воздействие на биологический субстрат практически отсутствует; 2) при средних интенсивностях воздействие упругих колебаний вызывает механические, тепловые и физ.-хим. изменения; 3) при больших интенсивностях в биологическом субстрате происходят необратимые изменения, ведущие иногда к гибели организма (см. Звук , биологический эффект действия звуков большой интенсивности).

Медицинская акустика , используя приемы и методы физиологической А., исследует и изыскивает возможности применения упругих колебаний в практической медицине (диагностике, терапии, хирургии).

Особое внимание уделяется изучению упругих колебаний, возникающих в организме человека при работе его внутренних органов и кровеносной системы (напр., механическая деятельность сердца, легких, пульсовые волны и т. д.). Эти исследования, проводимые в условиях нормы и патологии, служат основой создания акустических приборов и аппаратов, а также нек-рых методов исследования (напр., аускультация, пневмография, фонокардиография). Для диагностики заболеваний органа слуха, а также исследования слухового анализатора используется внешний звуковой генератор (см. Аудиометрия , аудиометр).

Одним из разделов использования звуковых колебаний в медицине являются устройства для протезирования голосового аппарата и коррекция слуха больного (см. Слуховые аппараты ).

Особенно широко применяется ультразвук. Он используется для терапии, обеспечивая высокую эффективность лечебного действия, все шире применяется в диагностических целях, дополняя рентгенографию. Ультразвук нашел применение в хирургии, что обусловлено легкостью получения мощных ультразвуков, при необходимости в виде тонких пучков с возможностью фокусировки их подобно оптическим лучам. Это используется при лечении нек-рых болезней мозга, когда необходимо локально некротизировать ткань (интенсивность каждого из направленных в заданную точку лучей ультразвука недостаточна, чтобы вызвать какое-либо патологическое изменение, но в фокусе их суммарная интенсивность оказывается достаточной, чтобы некротизировать ткань).

Ультразвуки обладают выраженными бактерицидными свойствами, что нашло применение, напр., при стерилизации молока, консервов и т. д. Ультразвук применяют и при очистке инструментов (на основе явления кавитации), в частности хирургических, и в первую очередь полых игл для инъекций (более подробно о применении ультразвука в медицине - см. Ультразвук ).

Одним из аспектов практического применения результатов исследований в области А. является сан. нормирование шума (см.). Уровень шума и его спектральный анализ измеряют шумомерами и анализаторами спектра звуков. На основании специальных работ, учитывающих вредное действие шума на организм человека, разработаны предельно допустимые нормы шума для различных условий. Аналогичные работы проведены и в области санитарного нормирования вибрации (см.).

Основные виды применения акустики в медицинской практике см. выше.

Архитектурная акустика изучает звуковые процессы в закрытых помещениях с точки зрения обеспечения хорошей слышимости речи и музыки во всех точках, где могут находиться слушатели, и др.

Атмосферная акустика занимается гл. обр. изучением закономерностей распространения звука в свободной атмосфере.

Техническая акустика рассматривает в основном практическую возможность приложения А. к технике передачи отдельных звуков, речи и музыки, что связано гл. обр. с проблемами преобразования звуковой энергии в электрическую; поэтому техническую А. нередко называют электроакустикой . Техническая А. наряду с общей, или теоретической, занимается вопросами создания измерительной, принимающей и передающей аппаратуры.

Особый раздел технической А. составляет гидроакустика , изучающая распространение звуковых волн и лучей в жидкой среде, и в первую очередь в воде.

Библиогр .: Беранек Л . Акустические измерения, пер. с англ., М., 1952; Красильников В. А . Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, М., 1960; Лэмб Г . Динамическая теория звука, пер. с англ., М., 1960; Поль Р. В . Механика, акустика и учение о теплоте, пер. с нем., М., 1971; Стретт Д. В . (Рэлей Д. В .), Теория звука, пер. с англ., т. 1 - 2, М., 1955; Скучик Е . Основы акустики, пер. с нем., т. 1 - 2, М.,19 58 - 1959; Мorse P. M . a. Ingard К. U . Theoretical acoustics, N. Y. а. о., 1968.

Л. А. Водолазский, А. А. Чевненко.


Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.

I. Предмет физики. Ее задачи. Звук, его характеристики.

Физика - наука о свойствах и формах существования материи.

Биофизика - медико-биодогическая наука, изучающая физические процессы и явления в живых системах, в том числе при различных внешних воздействиях.

Цели и задачи курса медицинской и биологической физики:

    Познакомиться с физическими и биофизическими механизмами, происходящими в тканях, органах и системах организма.

    Изучить физические и биофизические характеристики органов и тканей и физические принципы их работы.

    Познакомиться с физической основой методов диагностики и лечения.

    Познакомиться с физической основой методов работы медицинской аппаратуры.

    Изучить влияние внешних факторов на организм.

Особенности современной физики.

а) Современная физика имеет пограничные области с другими науками.

б) Физика разделена на ряд узких областей по разным признакам:

    по объему исследования;

    по предметам исследования.

Роль физики для других наук возрастает, она дает им теории, принципы, системы единиц, результаты экспериментов, создает основу для конструирования медицинской аппаратуры, объясняет различные физико-биологические процессы.

Особенности биофизики:

    Является пограничной наукой.

    Имеет узкие области:

    общие и частные;

    теоретические, экспериментальные и прикладные;

    изучает биофизику растений, животных и человека;

    квантовая биофизика;

    молекулярная, клеточная, биофизика тканей, органов, систем, популяций.

Звук, его характеристика.

Акустика - это наука о получении, распространении и свойствах механических волн и взаимодействии этих волн с физическими и биофизическими объектами.

Виды акустики:

    Техническая - исследует получение и распределение звука, разрабатывает методы звуковых исследований.

    Архитектурная - исследует вопросы получения хорошей слышимости или зашиты помещений (например, от шумов).

    Биологическая - исследует получение и применение звука живыми организмами.

    Медицинская - исследует физику и биофизику слуха и речи, возможности применения звука для диагностики и лечения. При этом следует различать применение слышимого звука и ультразвука.

Основные задачи медицинской акустики :

    разработка гигиенических норм использования звука в науке и промышленности;

    разработка звуковых методов диагностики и лечения;

    разработка ультразвуковых методов диагностики и лечения.

Звук как физическое явление.

Звук - разновидность механических колебаний, распространяемых в упругих средах преимущественно в виде продольных волн. В вакууме звук не распространяется.

Звуковая волна - механическое возмущение, распространяемое в упругой среде.

Звуковые колебания - механические колебания условных частиц среды.

Условные частицы - объемы среды, которые достаточно малы по сравнению с длинной волны.

Звуковое поле - часть пространства, в котором распространяется звуковая волна.

Классификация звуковых волн:

1. По частоте

    инфразвук (v < 16Гц)

    слышимый звук (16Гц < v < 20000Гц)

    ультразвук (20000Гц < v <100МГц)

    гиперзвук (v > 100МГц)

(все границы условны)

Инфразвук, ультразвук и гиперзвук не воспринимаются слуховым анализатором.

    По направлению смещения частиц среды :

    Продольные - волны, у которых колебания частиц среды происходят вдоль направления распространения волны.

    Поперечные - волны, в которых колебания частиц среды происходят в направлении, перпендикулярном направлению распространения волны.

В жидкостях и газах упругие силы возникают только при изменении объема, в них образуются только продольные волны.

В твердых телах упругие силы возникают как при изменении объема, так и при изменении формы, в них образуются как продольные, так и поперечные волны, причем скорость продольных волн больше скорости поперечных волн примерно в половину.

3. По форме колебаний:



Гармонический спектр

Их особенностью является то, что их можно представить математически и графически в виде суммы конечного или бесконечного числа простых по частоте синусоид, колеблющихся с равной амплитудой.