Как найти корень из числа 2. Формулы корней. Свойства корней. Как умножать корни? Примеры

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt{25}\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\) , \(\sqrt{-4}\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\) , а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2<0\) ;

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\) . \(\bullet\) Так как \(\sqrt{a^2}=|a|\) , то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\) , то \(a Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\) . Таким образом, так как \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Между какими целыми числами находится \(\sqrt{50}\) ?
Так как \(\sqrt{49}=7\) , \(\sqrt{64}=8\) , а \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\ &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\) .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt{28224}=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

В математике вопрос о том, как извлекать корень, считается относительно несложным. Если возвести в квадрат числа из натурального ряда: 1, 2, 3, 4, 5 …n, то у нас получится следующий ряд квадратов: 1, 4, 9, 16 …n 2 . Ряд квадратов является бесконечным, и если внимательно посмотреть на него, то вы увидите, что в нем нет очень многих целых чисел. Почему это так, объясним немного позже.

Корень из числа: правила вычисления и примеры

Итак, мы возвели число 2 в квадрат, то есть умножили его само на себя и получили 4. А как извлечь корень из числа 4? Сразу скажем, что корни могут быть квадратными, кубическими и какой угодно степени до бесконечности.

Степень корня – всегда натуральное число, то есть нельзя решить такое уравнение: корень в степени 3,6 из n.

Квадратный корень

Вернемся к вопросу о том, как извлечь корень квадратный из 4. Так как возводили мы число 2 именно в квадрат, то и корень будем извлекать квадратный. Для того чтобы правильно извлечь корень из 4, нужно просто правильно подобрать число, которое при возведении в квадрат дало бы число 4. И это, конечно же, 2. Посмотрите на пример:

  • 2 2 =4
  • Корень из 4 = 2

Этот пример довольно простой. Попробуем извлечь корень квадратный из 64. Какое число при умножении самого на себя дает 64? Очевидно, что это 8.

  • 8 2 =64
  • Корень из 64=8

Кубический корень

Как выше было сказано, корни бывают не только квадратными, на примере попробуем более понятно объяснить, как извлечь кубический корень или корень третьей степени. Принцип извлечения кубического корня тот же самый, что и у квадратного, разница лишь в том, что искомое число изначально было умножено само на себя не единожды, а дважды. То есть, допустим, мы взяли следующий пример:

  • 3x3x3=27
  • Естественно, кубическим корнем из числа 27 будет тройка:
  • Корень 3 из 27 = 3

Допустим, необходимо найти кубический корень из 64. Для решения этого уравнения достаточно найти такое число, которое при возведении в третью степень дало бы 64.

  • 4 3 =64
  • Корень 3 из 64 = 4

Извлечь корень из числа на калькуляторе

Конечно, лучше всего учиться извлекать квадратные, кубические и корни другой степени на практике, путем решения многих примеров и запоминания таблицы квадратов и кубов небольших чисел. В будущем это очень облегчит и сократит время решения уравнений. Хотя, нужно отметить, что порой требуется извлечь корень из такого большого числа, что подобрать правильное число, возведенное в квадрат, будет стоить очень больших трудов, если вообще это возможно. На помощь в извлечении квадратного корня придет обычный калькулятор. Как на калькуляторе извлечь корень? Очень просто введите число, из которого хотите найти результат. Теперь внимательно посмотрите на кнопки калькулятора. Даже на самом простом из них найдется клавиша со значком корня. Нажав на нее, вы немедленно получите готовый результат.

Не из каждого числа можно извлечь целый корень, рассмотрим следующий пример:

Корень из 1859 = 43,116122…

Вы можете параллельно попробовать решить этот пример на калькуляторе. Как видите, полученное число не является целым, более того, набор цифр после запятой является не конечным. Более точный результат могут дать специальные инженерные калькуляторы, на дисплее же обычных полный результат просто не умещается. А если вы продолжите начатый ранее ряд квадратов, то не найдете в нем числа 1859 именно потому, что число, которое возвели в квадрат для его получения, не является целым.

Если вам необходимо извлечь корень третьей степени на простом калькуляторе, то необходимо нажать дважды на кнопку со знаком корня. Для примера возьмем использованное выше число 1859 и извлечем из него кубический корень:

Корень 3 из 1859 = 6,5662867…

То есть, если число 6,5662867… возвести в третью степень, то мы получим приблизительно 1859. Таким образом, извлекать корни из чисел не сложно, достаточно лишь запомнить выше приведенные алгоритмы.

А у вас есть зависимость от калькулятора ? Или вы считаете, что кроме как с калькулятором или при помощи таблицы квадратов очень сложно вычислить, например, .

Случается, школьники привязаны к калькулятору и даже 0,7 на 0,5 умножают, нажимая на заветные кнопочки. Говорят, ну я все равно знаю как посчитать, а сейчас сэкономлю время… Вот будет экзамен… тогда и напрягусь…

Так дело в том, что на экзамене и так будет предостаточно «напряжных моментов»… Как говорится, вода камень точит. Вот и на экзамене мелочи, если их много, способны подкосить…

Давайте минимизируем количество возможных неприятностей.

Извлекаем квадратный корень из большого числа

Мы будем говорить сейчас только о случае, когда результат извлечения корня квадратного – целое число.

Случай 1.

Итак, пусть нам во что-бы то ни стало (например, при вычислении дискриминанта) нужно вычислить корень квадратный из 86436.

Мы будем раскладывать число 86436 на простые множители. Делим на 2, – получаем 43218; снова делим на 2, – получаем 21609. На 2 больше нацело число не делится. Но так как сумма цифр делится на 3, то и само число делится на 3 (вообще говоря, видно, что оно и на 9 делится). . Еще раз делим на 3, – получаем 2401. 2401 на 3 нацело не делится. На пять не делится (не оканчивается цифрой 0 или 5).

Подозреваем делимость на 7. Действительно, а ,

Итак, Полный порядок!

Случай 2.

Пусть нам нужно вычислить . Действовать так же, как описано выше, неудобно. Пытаемся разложить на простые множители…

На 2 число 1849 нацело не делится (не является четным)…

На 3 нацело не делится (сумма цифр не кратна 3)…

На 5 нацело не делится (последняя цифра – не 5 и не 0)…

На 7 нацело не делится, на 11 не делится, на 13 не делится… Ну и долго нам так перебирать все простые числа?

Будем рассуждать несколько иначе.

Мы понимаем, что

Мы сузили круг поиска. Теперь перебираем числа от 41 до 49. Причем ясно, что раз последняя цифра числа – 9, то останавливаться стоит на вариантах 43 или 47, – только эти числа при возведении в квадрат дадут последнюю цифру 9.

Ну и тут уже, конечно, мы останавливаемся на 43. Действительно,

P.S. А как, ксатати, мы умножаем 0,7 на 0,5?

Следует умножить 5 на 7, не обращая внимание на нули и знаки, а потом отделить, идя справа налево, два знака запятой. Получаем 0,35.

Соколов Лев Владимирович, учащийся 8 класса МКОУ «Тугулымская В(С)ОШ»

Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора.

Скачать:

Предварительный просмотр:

Районная научно-практическая конференция

обучающихся Тугулымского городского округа

Извлечение квадратных корней из больших чисел без калькулятора

Исполнитель: Лев Соколов,

МКОУ «Тугулымская В(С)ОШ»,

8 класс

Руководитель: Сидорова Татьяна

Николаевна

р.п. Тугулым, 2016 г.

Введение 3

Глава 1. Способ разложения на простые множители 4

Глава 2. Извлечение квадратного корня уголком 4

Глава 3. Способ использования таблицы квадратов двузначных чисел 6

Глава 4. Формула Древнего Вавилона 6

Глава 6. Канадский метод 7

Глава 7. Метод подбора угадыванием 8

Глава 8 . Метод вычетов нечётного числа 8

Заключение 10

Список литературы 11

Приложение 12

Введение

Актуальность исследования, когда я изучал тему квадратные корни в этом учебном году, то меня заинтересовал вопрос, как можно извлечь квадратный корень из больших чисел без калькулятора.

Я заинтересовался и решил изучить этот вопрос глубже, чем он изложен в школьной программе, а также приготовить мини-книжечку с наиболее простыми способами извлечения квадратных корней из больших чисел без калькулятора.

Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора.

Задачи:

  1. Изучить литературу по данному вопросу.
  2. Рассмотреть особенности каждого найденного способа и его алгоритм.
  3. Показать практическое применение полученных знаний и оценить

Степень сложности в использовании различных способов и алгоритмов.

  1. Создать мини-книжечку по самым интересным алгоритмам.

Объект исследования: математические символы – квадратные корни.

Предмет исследования: особенности способов извлечения квадратных корней без калькулятора.

Методы исследования:

  1. Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора.
  2. Сравнение найденных способов.
  3. Анализ полученных способов.

Все знают, что извлечь квадратный корень без калькулятора - это очень сложная

задача. Когда нет под рукой калькулятора, то начинаем методом подбора стараться вспомнить данные из таблицы квадратов целых чисел, но это не всегда помогает. Например, таблица квадратов целых чисел не даёт ответ на такие вопросы, как, например, извлечь корень из 75, 37,885,108,18061 и другие даже приблизительно.

Также часто на экзаменах ОГЭ и ЕГЭ пользование калькулятором запрещено и нет

таблицы квадратов целых чисел, а надо извлечь корень из 3136 или 7056 и т.д.

Но изучая литературу по данной теме, я узнал, что извлекать корни из таких чисел

возможно и без таблицы и калькулятора, люди научились задолго до изобретения микрокалькулятора. Исследуя эту тему, я нашел несколько способов решения данной проблемы.

Глава 1. Способ разложения на простые множители

Для извлечения квадратного корня можно разложить число на простые множители и извлечь квадратный корень из произведения.

Таким способом принято пользоваться при решении заданий с корнями в школе.

3136│2 7056│2

1568│2 3528│2

784│2 1764│2

392│2 882│2

196│2 441│3

98│2 147│3

49│7 49│7

7│7 7│7

√3136 = √2²∙2²∙2²∙7² = 2∙2∙2∙7 = 56 √3136 = √2²∙2²∙3²∙7² = 2∙2∙3∙7 = 84

Многие применяют его успешно и считают единственным. Извлечение корня разложением на множители - трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2∙2∙52441. А как быть дальше? С этой задачей сталкиваются все, и спокойно в ответе записывают остаток от разложения под знак корня. Методом проб и ошибок, подбором разложение, конечно, можно сделать, если быть уверенным в том, что получится красивый ответ, но практика показывает, что очень редко предлагаются задания с полным разложением. Чаще мы видим, что корень до конца не извлечь.

Поэтому, этот способ лишь частично решает проблему извлечения без калькулятора.

Глава 2. Извлечение квадратного корня уголком

Для извлечения квадратного корня уголком и рассмотрим алгоритм:
1-й шаг. Число 8649 разбиваем на грани справа налево; каждая из которых должна содержать две цифры. Получаем две грани:
.
2-й шаг. Извлекаем квадратный корень из первой грани 86, получаем
с недостатком. Цифра 9 –это первая цифра корня.
3-й шаг. Число 9 возводим в квадрат (9
2 = 81) и число 81 вычитаем из первой грани, получаем 86- 81=5. Число 5 – первый остаток.
4-й шаг. К остатку 5 приписываем вторую грань 49, получаем число 549.

5-й шаг . Удваиваем первую цифру корня 9 и, записывая слева, получаем-18

К числу нужно приписать такую наибольшую цифру, чтобы произведение числа, которое мы получим, на эту цифру было бы либо равно числу 549, либо меньше, чем 549. Это цифра 3. Она находится путем подбора: количество десятков числа 549, то есть число 54 делится на 18, получаем 3, так как 183 ∙ 3 = 549. Цифра 3 – это вторая цифра корня.

6-й шаг. Находим остаток 549 – 549 = 0. Так как остаток равен нулю, то мы получили точное значение корня – 93.

Пприведу еще пример: извлечь √212521

Шаги алгоритма

Пример

Комментарии

Разбить число на группы по 2 цифры в каждой справа налево

21’ 25’ 21

Общее число образовавшихся групп определяет количество цифр в ответе

Для первой группы цифр подобрать цифру, квадрат которой будет наибольшим, но не превосходящим числа первой группы

1 группа – 21

4 2 =16

цифра - 4

Найденная цифра записывается в ответе на первом месте

Из первой группы цифр вычесть найденный на шаге 2 квадрат первой цифры ответа

21’ 25’ 21

К остатку, найденному на шаге 3, приписать справа (снести) вторую группу цифр

21’ 25’ 21

16__

К удвоенной первой цифре ответа приписать справа такую цифру, чтобы произведение полученного в результате числа на эту цифру было наибольшим, но не превосходила числа, найденного на шаге 4

4*2=8

цифра – 6

86*6=516

Найденная цифра записывается в ответе на втором месте

Из числа, полученного на шаге 4 вычесть число, полученное на шаге 5. Снести к остатку третью группу

21’ 25’ 21

К удвоенному числу, состоящему из первых двух цифр ответа, приписать справа такую цифру, чтобы произведение полученного в результате числа на эту цифру был наибольшим, но не превосходило числа, полученного на шаге 6

46*2=92

цифра 1

921*1=921

Найденная цифра записывается в ответе на третьем месте

Записать ответ

√212521=461

Глава 3. Способ использования таблицы квадратов двузначных чисел

Про этот способ я узнал из Интернета. Способ очень простой и даёт мгновенное извлечение квадратного корня из любых целых чисел от 1 до 100 с точностью до десятых без калькулятора. Одно условие для этого метода – наличие таблицы квадратов чисел до 99.

(Она есть во всех учебниках алгебры 8 класса, и на экзамене ОГЭ предлагается в качестве справочного материала.)

Откройте таблицу и проверьте скорость нахождения ответа. Но сначала несколько рекомендаций: самый левый столбик – это будут в ответе целые, самая верхняя строчка – это десятые в ответе. А дальше всё просто: закройте две последние цифры числа в таблице и найдите нужное вам, не превосходящее подкоренное число, и далее действуйте по правилам этой таблицы.

Рассмотрим на примере. Найдём значение √87.

Закрываем две последние цифры у всех чисел в таблице и находим близкие для 87 – таких только два 86 49 и 88 37. Но 88 – это уже много.

Значит, остаётся только одно – 8649.

Левый столбик даёт ответ 9 (это целых), а верхняя строчка 3 (это десятых). Значит √87≈ 9,3. Проверим на МК √87 ≈ 9,327379.

Быстро, просто, доступно на экзамене. Но сразу понятно, что корни, большие 100 уже этим способом извлечь невозможно. Способ удобен для заданий с маленькими корнями и при наличии таблицы.

Глава 4. Формула Древнего Вавилона

Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью МК 5,2915026.

Как видим способ вавилонян дает хорошее приближение к точному значению корня.

Глава 5. Способ отбрасывания полного квадрата

(только у четырехзначных чисел)

Сразу стоит уточнить, что этот способ применим только для извлечения квадратного корня из точного квадрата, а алгоритм нахождения зависит от величины подкоренного числа.

  1. Извлечение корней до числа 75 2 = 5625

Например: √¯3844 = √¯ 37 00 + 144 = 37 + 25 = 62.

Число 3844 представим в виде суммы, выделив из этого числа квадрат 144, затем выделенный квадрат отбрасываем, к числу сотен первого слагаемого (37) прибавляем всегда 25 . Получим ответ 62.

Так можно извлекать только квадратные корни до числа 75 2 =5625!

2) Извлечение корней после числа 75 2 = 5625

Как же устно извлечь квадратные корни из чисел больше 75 2 =5625?

Например: √7225 = √ 70 00 + 225 = 70 + √225 = 70 + 15 = 85.

Поясним,7225 представим в виде суммы 7000 и выделенного квадрата 225. Затем к числу сотен прибавить квадратный корень из 225, равный 15.

Получим ответ 85.

Этот способ нахождения очень интересен и в какой – то мере оригинален, но в ходе моего исследования встретился только один раз в работе пермского преподавател.

Возможно, он мало изучен или имеет какие – то исключения.

Он достаточно сложен в запоминании из – за двойственности алгоритма и применим только для четырёхзначных чисел точных корней, но я проработал множество примеров и убедился в его правильности. Кроме всего этот способ доступен тем, кто уже запомнил наизусть квадраты чисел от 11 до 29, ведь без их знания он будет бесполезен.

Глава 6. Канадский метод

√ X = √ S + (X - S) / (2 √ S), гдеX - число, из которого необходимо извлечь квадратный корень, а S - число ближайшего точного квадрата.

Давайте попробуем извлечь квадратный корень из 75


√ 75 = 9 + (- 6/18) = 9 - 0,333 = 8,667

При детальном изучении этого метода легко можно доказать его сходство с вавилонским и поспорить за авторские права изобретения этой формулы, если такие есть в действительности. Метод несложный и удобный.

Глава 7. Метод подбора угадыванием

Этот метод предлагают английские студенты математического колледжа Лондона, но каждый в своей жизни хоть раз непроизвольно пользовался этим методом. Он основан на подборе разных значений квадратов близких чисел путём сужения области поиска. Овладеть этим способом может каждый, но вот пользоваться вряд ли, потому что он требует многократного вычисления произведения столбиком не всегда правильно угаданных чисел. Этот способ проигрывает и в красоте решения, и по времени. Алгоритм прост:

Предположим, вы хотите извлечь квадратный корень из 75.

Так как 8 2 = 64 и 9 2 = 81, вы знаете, ответ находится где-то между ними.

Попробуйте возвести 8,5 2 и вы получите 72,25 (слишком мало)

Теперь попробуйте 8,6 2 и вы получите 73,96 (слишком небольшой, но все ближе)

Теперь попробуйте 8,7 2 и вы получите 75,69 (слишком большая)

Теперь вы знаете, ответ находится между 8,6 и 8,7

Попробуйте возвести 8,65 2 и вы получите 74,8225 (слишком мало)

Теперь попробуйте 8,66 2 ... и так далее.

Продолжайте, пока не получите ответ достаточно точный для вас.

Глава 8. Метод вычетов нечётного числа

Многие знают метод извлечения квадратного корня разложением числа на простые множители. В своей работе представлю ещё один способ, с помощью которого можно узнать целую часть квадратного корня числа. Способ очень простой. Заметим, что для квадратов чисел верны следующие равенства:

1=1 2

1+3=2 2

1+3+5=3 2

1+3+5+7=4 2 и т.д.

Правило: узнать целую часть квадратного корня числа можно вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и сочтя количество выполненных действий.

Например, чтобы получить квадратный корень из 36 и 121 это:

Общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6.

Общее количество вычитаний = 11, поэтому √121 = 11.

Еще пример: найдём √529

Решение: 1)_529

2)_528

3)_525

4)_520

5)_513

6)_504

7)_493

8)_480

9)_465

10)_448

11)_429

12)_408

13)_385

14)_360

15)_333

16)_304

17)_273

18)_240

19)_205

20)_168

21)_129

22)_88

23)_45

Ответ: √529 = 23

Ученые называют этот метод арифметическим извлечением квадратного корня, а за глаза «методом черепахи» из-за его медлительности.
Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне доступен детям, решающим простейшие математические задачи, требующие извлечения квадратного корня. Попробуйте извлечь квадратный корень из числа, например, 5963364 этим способом и вы поймёте, что он «работает», безусловно, без погрешностей для точных корней, но очень - очень длинный в решёнии.

Заключение

Описанные в работе методы извлечения корней встречаются во многих источниках. Тем не менее, разобраться в них оказалось для меня непростой задачей, что вызвало немалый интерес. Представленные алгоритмы позволят всем, кто заинтересуется данной темой, быстрее овладеть навыками вычисления квадратного корня, их можно использовать при проверке своего решения и не зависеть от калькулятора.

В результате проведённого исследования я пришел к выводу: различные способы извлечения квадратного корня без калькулятора необходимы в школьном курсе математики, чтобы развивать навыки вычислений.

Теоретическая значимость исследования – систематизированы основные методы извлечения квадратных корней.

Практическая значимость: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами (Приложение1).

Литература и сайты Интернета:

  1. И.Н. Сергеев, С.Н. Олехник, С.Б.Гашков «Примени математику». – М.: Наука, 1990
  2. Керимов З., «Как найти целый корень?» Научно-популярный физико-математический журнал "Квант" №2, 1980
  3. Петраков И.С. «математические кружки в 8-10 классах»; Книга для учителя.

–М.:Просвещение,1987

  1. Тихонов А.Н., Костомаров Д.П. «Рассказы о прикладной математики».- М.: Наука. Главная редакция физико- математической литературы, 1979
  2. Ткачева М.В. Домашняя математика. Книга для учащихся 8 класса учебных заведений. – Москва, Просвещение, 1994г.
  3. Жохов В.И., Погодин В.Н. Справочные таблицы по математике.-М.: ООО «Издательство «РОСМЭН-ПРЕСС», 2004.-120 с.
  4. http://translate.google.ru/translate
  5. http://www.murderousmaths.co.uk/books/sqroot.htm
  6. http://ru.wikipedia.ord /wiki /teorema/

Добрый день, уважаемые гости!

Меня зовут Лев Соколов, я учусь в 8 классе в вечерней школе.

Представляю вашему вниманию работу на тему: « Извлечение квадратных корней из больших чисел без калькулятора».

При изучении темы квадратные корни в этом учебном году, меня заинтересовал вопрос, как можно извлечь квадратный корень из больших чисел без калькулятора и я решил изучить его глубже, так как на следующий год мне предстоит сдавать экзамен по математике.

Цель моей работы: найти и показать способы извлечения квадратных корней без калькулятора

Для достижения цели я решал следующие задачи:

1. Изучить литературу по данному вопросу.

2. Рассмотреть особенности каждого найденного способа и его алгоритм.

3. Показать практическое применение полученных знаний и оценить степень сложности в использовании различных способов и алгоритмов.

4.Создать мини-книжечку по самым интересным алгоритмам.

Объектом моего исследования стали квадратные корни.

Предмет исследования: способы извлечения квадратных корней без калькулятора.

Методы исследования:

1. Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора.

2. Сравнение и анализ найденных способов.

Я нашел и изучил 8 способов извлечения квадратных корней без калькулятора и отработал их на практике. Название найденных способов приведены на слайде.

Я остановлюсь на тех из них, которые мне понравились.

Покажу на примере, как можно способом разложения на простые множители извлечь квадратный корень из числа 3025.

Основной недостаток этого способа - он занимает много времени.

С помощью формулы Древнего Вавилона я извлеку квадратный корень из этого же числа 3025.

Способ удобен только для малых чисел.

Из этого же числа 3025 извлекаем квадратный корень уголком.

На мой взгляд, это самый универсальный способ, он применим к любым числам.

В современной науке известно много способов извлечения квадратного корня без калькулятора, но я изучил не все.

Практическая значимость моей работы: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами.

Результаты моей работы могут успешно применяться на уроках математики, физики и других предметах, где требуется извлечение корней без калькулятора.

Спасибо за внимание!

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Извлечение квадратных корней из больших чисел без калькулятора Исполнитель: Лев Соколов, МКОУ « Тугулымская В(С)ОШ»,8 класс Руководитель: Сидорова Татьяна Николаевна I категория, учитель математики р.п. Тугулым

Правильному применению методов можно научиться, применяя и на разнообразных примерах. Г. Цейтен Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора. Задачи: - Изучить литературу по данному вопросу. - Рассмотреть особенности каждого найденного способа и его алгоритм. - Показать практическое применение полученных знаний и оценить степень сложности в использовании различных способов и алгоритмов. - Создать мини-книжечку по самым интересным алгоритмам.

Объект исследования: квадратные корни Предмет исследования: способы извлечения квадратных корней без калькулятора. Методы исследования: Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора. Сравнение найденных способов. Анализ полученных способов.

Способы извлечения квадратного корня: 1. Способ разложения на простые множители 2. Извлечение квадратного корня уголком 3. Способ использования таблицы квадратов двузначных чисел 4. Формула Древнего Вавилона 5. Способ отбрасывания полного квадрата 6. Канадский метод 7. Метод подбора угадыванием 8. Метод вычетов нечётного числа

Способ разложения на простые множители Для извлечения квадратного корня можно разложить число на простые множители и извлечь квадратный корень из произведения. 3136│2 7056│2 209764│2 1568│2 3528│2 104882│2 784│2 1764│2 52441│229 392│2 882│2 229│229 196│2 441│3 98│2 147│3 √209764 = √2∙2∙52441 = 49│7 49│7 = √2²∙229² = 458. 7│7 7│7 √3136 = √ 2²∙2²∙2²∙7² = 2∙2∙2∙7 = 56. √7056 = √2²∙2²∙3²∙7² = 2∙2∙3∙7 = 84. Не всегда легко можно разложить, чаще до конца не извлекается, занимает много времени.

Формула Древнего Вавилона (Вавилонский метод) Алгоритм извлечения квадратного корня древневавилонским способом. 1 . Представить число с в виде суммы а ² + b , где а ² ближайший к числу с точный квадрат натурального числа а (а ² ≈ с); 2. Приближенное значение корня вычисляется по формуле: Результат извлечения корня с помощью калькулятора равен 5,292.

Извлечение квадратного корня уголком Способ почти универсальный, так как применим к любым числам, но составление ребуса (угадывание цифры на конце числа) требует логики и хороших вычислительных навыков столбиком.

Алгоритм извлечения квадратного корня уголком 1. Разбиваем число (5963364) на пары справа налево (5`96`33`64) 2. Извлекаем квадратный корень из первой слева группы (- число 2). Так мы получаем первую цифру числа. 3. Находим квадрат первой цифры (2 2 =4). 4. Находим разность первой группы и квадрата первой цифры (5-4=1). 5.Сносим следующие две цифры (получили число 196). 6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4). 7.Теперь необходимо найти вторую цифру числа: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &. 8. Находим разность (196-176=20). 9. Сносим следующую группу (получаем число 2033). 10. Удваиваем число 24, получаем 48. 11. 48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа. Далее процесс повторяется.

Метод вычетов нечётного числа (арифметический способ) Алгоритм извлечения квадратного корня: Вычитать нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю. Подсчитать количество выполненных действий – это число есть целаячасть числа извлекаемого квадратного корня. Пример 1: вычислить 1. 9 − 1 = 8; 8 − 3 = 5; 5 − 5 = 0. 2. Выполнено 3 действия

36 - 1 = 35 - 3 = 32 - 5 = 27 - 7 = 20 - 9 = 11 - 11 = 0 общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6. 121 – 1 = 120 - 3 = 117- 5 = 112 - 7 = 105 - 9 = 96 - 11 = 85 – 13 = 72 - 15 = 57 – 17 = 40 - 19 = 21 - 21 = 0 Общее количество вычитаний = 11, поэтому квадратный корень из 121 = 11. 5963364 = ??? Российские учёные «за глаза» называют его «методом черепахи» из-за его медлительности. Он неудобен для больших чисел.

Теоретическая значимость исследования – систематизированы основные методы извлечения квадратных корней. Практическая значимость: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами.

Спасибо за внимание!

Предварительный просмотр:

При решении некоторых задач потребуется извлечь квадратный корень из крупного числа. Как это сделать?

Метод вычетов нечётного числа.

Способ очень простой. Заметим, что для квадратов чисел верны следующие равенства:

1=1 2

1+3=2 2

1+3+5=3 2

1+3+5+7=4 2 и т.д.

Правило: узнать целую часть квадратного корня числа можно вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и сочтя количество выполненных действий.

Например, чтобы получить квадратный корень из 36 и 121 это:

36 - 1 = 35 - 3 = 32 - 5 = 27 - 7 = 20 - 9 = 11 - 11 = 0

Общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6.

121 - 1 = 120 - 3 = 117- 5 = 112 - 7 = 105 - 9 = 96 - 11 = 85 – 13 = 72 - 15 = 57 – 17 = 40 - 19 = 21 - 21 = 0

Общее количество вычитаний = 11, поэтому √121 = 11.

Канадский метод.

Этот быстрый метод был открыт молодыми учёными одного из ведущих университетов Канады в 20 веке. Его точность – не более двух – трёх знаков после запятой. Вот их формула:

√ X = √ S + (X - S) / (2 √ S), где X - число, из которого необходимо извлечь квадратный корень, а S - число ближайшего точного квадрата.

Пример. Извлечь квадратный корень из 75.

X = 75, S = 81. Это означает, что √ S = 9.

Просчитаем по этой формуле √75: √ 75 = 9 + (75 - 81) / (2∙ 9)
√ 75 = 9 + (- 6/18) = 9 - 0,333 = 8,667

Способ извлечения квадратного корня уголком.

1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)

2. Извлекаем квадратный корень из первой слева группы ( - число 2). Так мы получаем первую цифру числа.

3. Находим квадрат первой цифры (2 2 =4).

4. Находим разность первой группы и квадрата первой цифры (5-4=1).

5.Сносим следующие две цифры (получили число 196).

6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).

7.Теперь необходимо найти вторую цифру числа: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &.

8. Находим разность (196-176=20).

9. Сносим следующую группу (получаем число 2033).

10. Удваиваем число 24, получаем 48.

11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа.


Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81.

Метод подбора.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √ 676 = 26.

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Вавилонский метод.

Шаг №1. Представить число х в виде суммы: х=а 2 + b, где а 2 ближайший к числу х точный квадрат натурального числа а.

Шаг №2. Использовать формулу:

Пример. Вычислить .

Арифметический метод.

Вычитаем из числа все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю. Подсчитав количество выполненных действий, определяем, целую часть квадратного корня из числа.

Пример. Вычислить целую часть числа .

Решение. 12 - 1 = 11; 11 - 3 = 8; 8 - 5 = 3; 3 3 - целая часть числа . Итак, .

Метод (известный как метод Ньютона) заключается в следующем.

Пусть а 1 - первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа - точного квадрата, не превосходящего .

Указанный способ позволяет извлекать квадратный корень из большого числа с любой точностью, правда с существенным недостатком: громоздкость вычислений.

Метод оценки.

Шаг №1. Выяснить диапазон, в котором лежит исходный корень (100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000).

Шаг №2 . По последней цифре определить на какую цифру заканчивается искомое число.

Цифра единиц числа х

Цифра единиц числа х 2

Шаг №3. Возвести в квадрат предполагаемые числа и определить из них искомое число.

Пример 1. Вычислить .

Решение. 2500 50 2 2 50

= *2 или = *8.

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58
2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Следовательно, = 58.

Глава первая.

Извлечение из данного целого числа наибольшего целого квадратного корня.

170. Предварительные замечания.

а) Так как мы будем говорить об извлечении только квадратного корня, то для сокращения речи в этой главе мы вместо „квадратный" корень будем говорить просто „корень".

б) Если возвысим в квадрат числа натурального ряда: 1,2,3,4,5 . . . , то получим такую таблицу квадратов: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,121,144. .,

Очевидно, имеется очень многo целых чисел, которые в этой таблице не находятся; из таких чисел, конечно, нельзя извлечь целый корень. Поэтому, если требуется извлечь корень из какого-нибудь целого числа, напр. требуется найти √4082 , то мы условимся это требование понимать так: извлечь целый корень из 4082, если это возможно; если же нельзя, то мы должны найти наибольшее целое число, квадрат которого заключается в 4082 (такое число есть 63, так как 63 2 = 39б9, а 64 2 = 4090).

в) Если данное число меньше 100, то корень из него находится по таблице умножения; так, √60 будет 7, так как семью 7 равно 49, что меньше 60, а восемью 8 составляет 64, что больше 60.

171. Извлечение корня из числа, меньшего 10000, но большего 100. Пусть надо найти √4082 . Так как это число меньше 10 000, то корень из него меньше √l0 000 = 100. С другой стороны, данное число больше 100; значит, корень из него больше (или равен 10) . (Если бы, напр., требовалось найти √ 120 , то хотя число 120 > 100, однако √ 120 равен 10, т.к. 11 2 = 121.) Но всякое число, которое больше 10, но меньше 100, имеет 2 цифры; значит, искомый корень есть сумма:

десятки + единицы,

и поэтому квадрат его должен равняться сумме:

Сумма эта должна быть наибольшим квадратом, заключающимся в 4082.

Возьмем из них наибольший, 36, и допустим,что квадрат десятков корня будет равен именно этому наибольшему квадрату. Тогда число десятков в корне должно быть 6. Проверим теперь, что это всегда должно быть так, т. е. всегда число десятков корня равно наибольшему целому корню из числа сотен подкоренного числа.

Действительно, в нашем примере число десятков корня не может быть больше 6, так как (7 дес.) 2 = 49 сотен, что превосходит 4082. Но оно не может быть и меньше 6, так как 5 дес. (с единицами) меньше 6 дес, а между тем (6 дес.) 2 = 36 сотен, что меньше 4082. А так как мы ищем наибольший целый корень, то мы не должны брать для корня 5 дес, когда и 6 десятков оказывается не много.

Итак, мы нашли число десятков корня, именно 6. Пишем эту цифру направо от знака =, запомнив, что она означает десятки корня. Возвысив ее в квадрат, получим 36 сотен. Вычитаем эти 36 сотен из 40 сотен подкоренного числа и сносим две остальные цифры данного числа. В остатке 482 должны содержаться 2 (6 дес.) (ед.) + (ед.)2. Произведение (6 дес.) (ед.) должно составлять десятки; поэтому удвоенное произведение десятков на единицы надо искать в десятках остатка, т. е. в 48 (мы получим число их, отделив в остатке 48"2 одну цифру справа). Удвоенные десятки корня составляют 12. Значит, если 12 умножим на единицы корня (которые пока неизвестны), то мы должны получить число, содержащееся в 48. Поэтому мы разделим 48 на 12.

Для этого налево от остатка проводим вертикальную черту и за нею (отступив от черты на одно место влево для цели, которая сейчас обнаружится) напишем удвоенную первую цифру корня, т. е. 12, и на нее разделим 48. В частном получим 4.

Однако, заранее нельзя ручаться, что цифру 4 можно принять за единицы корня, так как мы сейчас разделили на 12 все число десятков остатка, тогда как некоторая часть из них может и не принадлежать удвоенному произведению десятков на единицы, а входит в состав квадрата единиц. Поэтому цифра 4 может оказаться велика. Надо ее испытать . Она, очевидно, годится в том случае, если сумма 2 (6 дес.) 4 + 4 2 окажется не больше остатка 482.

В результате получаем сразу сумму того и другого. Полученное произведение оказалось 496, что больше остатка 482; значит, цифра 4 велика. Тогда испытаем таким же образом следующую меньшую цифру 3.

Примеры.

В примере 4-м при делении 47 десятков остатка на 4, мы получаем в частном 11. Но так как цифра единиц корня не может быть двузначным числом 11 или 10, то надо прямо испытать цифру 9.

В примере 5-м после вычитания из первой грани квадрата 8 остаток оказывается 0, и следующая грань тоже состоит из нулей. Это показывает, что искомый корень состоит только из 8 десятков, и потому на место единиц надо поставить нуль.

172. Извлечение корня из числа, большего 10000 . Пусть требуется найти √35782 . Так как подкоренное число превосходит 10 000, то корень из него больше √10000 = 100 и, следовательно, он состоит из 3 цифр или более. Из скольких бы цифр он ни состоял, мы можем его всегда рассматривать как сумму только десятков и единиц. Если, напр., корень оказался бы 482, то мы можем его считать за сумму 48 дес. + 2 ед. Тогда квадрат корня будет состоять из 3 слагаемых:

(дес.) 2 + 2 (дес.) (ед.) + (ед.) 2 .

Теперь мы можем рассуждать совершенно так же, как и при нахождении √4082 (в предыдущем параграфе). Разница будет только та, что для нахождения десятков корня из 4082 мы должны были извлечь корень из 40, и это можно было сделать по таблице умножения; теперь же для получения десятков√35782 нам придется извлечь корень из 357, что по таблице умножения нельзя выполнить. Но мы можем найти√357 тем приемом, который был описан в предыдущем параграфе, так как число 357 < 10 000. Наибольший целый корень из 357 оказывается 18. Значит, в √3"57"82 должно быть 18 десятков. Чтобы найти единицы, надо из 3"57"82 вычесть квадрат 18 десятков, для чего достаточно вычесть квадрат 18 из 357 сотен и к остатку снести 2 последние цифры подкоренного числа. Остаток от вычитания квадpaта 18 из 357 у нас уже есть: это 33. Значит, для получения остатка от вычитания квадрата 18 дес. из 3"57"82, достаточно к 33 приписать справа цифры 82.

Далее поступаем так, как мы поступали при нахождении √4082 , a именно: налево от остатка 3382 проводим вертикальную черту и за нею пишем (отступив от черты на одно место) удвоенное число найденных десятков корня, т. е. 36 (дважды 18). В остатке отделяем одну цифру справа и делим число десятков остатка, т. е. 338, на 36. В частном получаем 9. Эту цифру испытываем, для чего ее приписываем к 36 справа и на нее же умножаем. Произведение оказалось 3321, что меньше остатка. Значит, цифра 9 годится, пишем ее в корне.

Вообще, чтобы извлечь квадратный корень из какого угодно целого числа, надо сначала извлечь корень из числа его сотен; если это число более 100, то придется искать корень из числа сотен этих сотен, т. е. из десятков тысяч данного числа; если и это число более 100, придется извлекать корень из числа сотен десятков тысяч, т. е. из миллионов данного числа, и т. д.

Примеры.

В последнем примере, найдя первую цифру и вычтя квадрат ее, получаем в остатке 0. Сносим следующие 2 цифры 51. Отделив десятки, мы получаем 5 дес, тогда как удвоенная найденная цифра корня есть 6. Значит, от деления 5 на 6 мы получаем 0. Ставим в корне 0 на втором месте и к остатку сносим следующие 2 цифры; получаем 5110. Далее продолжаем как обыкновенно.

В этом примере искомый корень состоит только из 9 сотен, и потому на месте десятков и на месте единиц надо поставить нули.

Правило. Чтобы, извлечь квадратный корень из данною целого числа, разбивают его, от правой руки к левой, на грани, по 2 цифры в каждой, кроме последней, в которой может быть и одна цифра.
Чтобы найти первую цифру корня, извлекают квадратный корень из первой грани.
Чтобы найти вторую цифру, из первой грани вычитают квадрат первой цифры корня, к остатку сносят вторую грань и число десятков получившегося числа делят на удвоенную первую цифру корня; полученное целое число подвергают испытанию.
Испытание это производится так: за вертикальной чертой (налево от остатка) пишут удвоенное ранее найденное число корня и к нему, с правой стороны, приписывают испытуемую цифру, получившееся, после этой приписки число умножают на испытуемую цифру. Если после умножения получится число, большее остатка, то испытуемая цифра не годится и надо испытать следующую меньшую цифру.
Следующие, цифры корня находятся по тому же приему.

Если после снесения грани число десятков получившегося числа окажется меньше делителя, т. е. меньше удвоенной найденной части корня, то в корне ставят 0, сносят следующую грань и продолжают действие дальше.

173. Число цифр корня. Из рассмотрения процесса нахождения корня следует, что в корне столько цифр, сколько в подкоренном числе заключается граней по 2 цифры каждая (в левой грани может быть и одна цифра).

Глава вторая.

Извлечение приближенных квадратных корней из целых и дробных чисел .

Извлечение квадратного корня из многочленов см. в дополнениях ко 2-й части § 399 и след.

174. Признаки точного квадратного корня. Точным квадратным корнем из данного числа называется такое число, квадрат которого в точности равняется данному числу. Укажем некоторые признаки, по которым можно судить, извлекается ли из данного числа точный корень, или нет:

а) Если из данного целого числа не извлекается точный целый корень (получается при извлечении остаток), то из такого числа нельзя найти и дробный точный корень, так как всякая дробь, не равная целому числу, будучи умножена сама на себя, дает в произведении тоже дробь, а не целое число.

б) Так как корень из дроби равен корню из числителя, деленному на корень из знаменателя, то точный корень из несократимой дроби не может быть найден в том случае, если его нельзя извлечь из числителя или из знаменателя. Напр, из дробей 4 / 5 , 8 / 9 и 11 / 15 нельзя извлечь точный корень, так как в первой дроби нельзя его извлечь из знаменателя, во второй - из числителя и в третьей - ни из числителя, ни из знаменателя.

Из таких чисел, из которых нельзя извлечь точный корень, можно извлекать лишь приближенные корни.

175. Приближенный корень с точностью до 1 . Приближенным квадратным корнем с точностью до 1 из данного числа (целого или дробного - все равно) называется такое целое число, которое удовлетворяет следующим двум требованиям:

1) квадрат этого числа не больше данного числа; 2) но квадрат этого числа увеличенного на 1, больше данного числа. Другими словами, приближенным квадратным корнем с точностью до 1 называется наибольший целый квадратный корень из данного числа, т. е.тот корень, который мы научились находить в предыдущей главе. Корень этот называется приближенным с точностью до 1, потому что для получения точного корня к этому приближенному корню надо было бы добавить еще некоторую дробь, меньшую 1, так что если вместо неизвестного точного корня мы возьмем этот приближенный, то сделаем ошибку, меньшую 1.

Правило. Чтобы извлечь приближенный квадратный корень с точностью до 1, надо извлечь наибольший целый корень из целой части данного числа.

Найденное по этому правилу число есть приближенный корень с недостатком , так как в нем недостает до точного корня некоторой дроби (меньшей 1). Если этот корень увеличим на 1, то получим другое число, в котором есть некоторый избыток над точным корнем, и избыток этот меньше 1. Этот увеличенный на 1 корень можно назвать тоже приближенным корнем с точностью до 1, но с избытком. (Названия: „с недостатком" или „с избытком" в некоторых математических книгах заменены другими равносильными: „по недостатку" или „по избытку".)

176. Приближенный корень с точностью до 1 / 10 . Пусть требуется найти √2,35104 с точностью до 1 / 10 . Это значит, что требуется найти такую десятичную дробь, которая состояла бы из целых единиц и десятых долей и которая удовлетворяла бы двум следующим требованиям:

1) квадрат этой дроби не превосходит 2,35104, но 2) если увеличим ее на 1 / 10 , то квадрат этой увеличенной дроби превосходит 2,35104.

Чтобы найти такую дробь, мы сначала нaйдем приближенный корень с точностью до 1, т. е. извлечем корень только из целого числа 2. Получим 1 (и в остатке 1). Пишем в корне цифру1 и ставим после нее запятую. Теперь будем искать цифру десятых. Для этого сносим к остатку 1 цифры 35, стоящие направо от запятой, и продолжаем извлечениетак, как будто мы извлекали корень из целого числа 235. Полученную цифру 5 пишем в корне на месте десятых. Остальные цифры подкоренного числа (104) нам не нужны. Что полученное число 1,5 будет действительно приближенный корень с точностью до 1 / 10 видно из следующего. Если бы мы находили наибольший целый корень из 235 с точностью до 1, то получили бы 15. Значит:

15 2 < 235, но 16 2 >235.

Разделив все эти числа на 100, получим:

Значит, число 1,5 есть та десятичная дробь, которую мы назвали приближенным корнем с точностью до 1 / 10 .

Найдем еще этим приемом следующие приближенные корни с точностью до 0,1:

177. Приближенный квадратный корень с точностью до 1 / 100 до 1 / 1000 и т. д.

Пусть требуется найти с точностью до 1 / 100 приближенный √248 . Это значит: найти такую десятичную дробь, которая состояла бы из целых, десятых и сотых долей и которая удовлетворяла бы двум требованиям:

1) квадрат ее не превосходит 248, но 2) если увеличим эту дробь на 1 / 100 то квадрат этой увеличенной дроби превосходит 248.

Такую дробь мы найдем в такой последовательности: сначала отыщем целое число, потом цифру десятых, затем и цифру сотых. Корень из целого числа будет 15 целых. Чтобы получить цифру десятых, надо как мы видели, снести к остатку 23 еще 2 цифры, стоящие направо от запятой. В нашем примере этих цифр нет вовсе, ставим на их место нули. Приписав их к остатку и продолжая действие так, как будто находим корень из целого числа 24 800, мы найдем цифру десятых 7. Остается найти цифру сотых. Для этого приписываем к остатку 151 еще 2 нуля и продолжаем извлечение, как будто мы находим корень из целого числа 2 480 000. Получаем 15,74. Что это число действительно есть приближенный корень из 248 с точностью до 1 / 100 видно из следующего. Если бы мы находили наибольший целый квадратный корень из целого числа 2 480 000, то получили бы 1574; значит:

1574 2 < 2 480 000, но 1575 2 > 2 480 000.

Разделив все числа на 10 000 (= 100 2), получим:

Значит, 15,74 есть та десятичная дробь, которую мы назвали приближенным корнем с точностью до 1 / 100 из 248.

Применяя этот прием к нахождению приближенного корня с точностью до 1 / 1000 до 1 / 10000 и т. д. найдем следующее.

Правило. Чтобы извлечь из данного целою числа или из данной десятичной дроби приближенный корень с точностью до 1 / 10 до 1 / 100 до 1 / 100 и т. д., находят сначала приближенный корень с точностью до 1, извлекая корень из целого числа (если его нет, пишут о корне 0 целых).

Потом находят цифру десятых. Для этого к остатку сносят,2 цифры подкоренного числа, стоящие направо от запятой (если их нет, приписывают к остатку два нуля), и продолжают извлечение так, как это делается при извлечении корня из целого числа. Полученную цифру пишут в корне на месте десятых.

Затем находят цифру сотых. Для этого к остатку сносят снова две цифры, стоящие направо от тех, которые были только что снесены, и т. д.

Таким образом, при извлечении корня из целого числа с десятичной дробью, надо делить на грани по 2 цифры в каждой, начиная от запятой, как влево (в целой части числа), так и вправо, (в дробной части).

Примеры.

1) Найти до 1 / 100 корни: а) √2 ; б) √0,3 ;

В последнем примере мы обратили дробь 3 / 7 в десятичную, вычислив 8 десятичных знаков, чтобы образовались 4 грани, потребные для нахождения 4 десятичных знаков корня.

178. Описание таблицы квадратных корней. В конце этой книги приложена таблица квадратных корней, вычисленных с четырьмя цифрами. По этой таблице можно быстро находить квадратный корень из целого числа (или десятичной дроби), которое выражено не более, чем четырьмя цифрами. Прежде чем объяснить, как эта таблица устроена, заметим, что первую значащую цифру искомого корня мы всегда можем найти без помощи таблиц по одному взгляду на подкоренное число; мы легко также определим, какой десятичный разряд означает первая цифра корня и, следовательно, где в корне, когда найдем его цифры, надо поставить запятую. Приведем несколько примеров:

1) √5"27,3 . Первая цифра будет 2, так как левая грань подкоренного числа есть 5; а корень из 5 равен 2. Кроме того, так как в целой части подкоренного числа всех граней только 2, то в целой части искомого корня должно быть 2 цифры и, следовательно, первая его цифра 2 должна означать десятки.

2) √9,041 . Очевидно, в этом корне первая цифра будет 3 простые единицы .

3) √0,00"83"4 . Первая значащая цифра есть 9, так как грань, из которой пришлось бы извлекать корень для получения первой значащей цифры, есть 83, а корень из 83 равен 9. Так как в искомом числе не будет ни целых, ни десятых, то первая цифра 9 должна означать сотые.

4) √0,73"85 . Первая значащая цифра есть 8 десятых .

5) √0,00"00"35"7 . Первая значащая цифра будет 5 тысячных .

Сделаем еще одно замечание. Положим, что требуется извлечь корень из такого числа, которое, после отбрасывания в нем занятой, изображается рядом таких цифр: 5681. Корень этот может быть один из слелуюших:

Если возьмем корни, подчеркнутые нами одной чертою, то все они будут выражены одним и тем же рядом цифр, именно теми цифрами, которые получаются при извлечении корня из 5681 (это будут цифры 7, 5, 3, 7). Причина этому та, что грани, на которые приходится разбивать подкоренное число при нахождении цифр корня, будут во всех этих примерах одни и те же, поэтому и цифры для каждого корня окажутся одинаковые (только положение запятой будет, конечно, различное). Точно так же во всех корнях, подчеркнутых нами двумя чертами, должны получиться одинаковые цифры, именно те, которыми выражается √568,1 (эти цифры будут 2, 3, 8, 3), и по той же причине. Таким образом, цифры корней из чисел, изображаемых (по отбрасывании запятой) одним и тем же рядом цифр 5681, будут двоякого (и только двоякого) рода: либо это ряд 7, 5, 3, 7, либо ряд 2, 3, 8, 3. То же самое, очевидно, может быть сказано о всяком другом ряде цифр. Поэтому, как мы сейчас увидим, в таблице каждому ряду цифр подкоренного числа соответствуют 2 ряда цифр для корней.

Теперь мы можем объяснить устройство таблицы и способ ее пользования. Для ясности объяснения мы изобразили здесь начало первой страницы таблицы.

Таблица эта расположена на нескольких страницах. На каждой из них в первой слева колонке помещены числа 10, 11, 12... (до 99). Эти числа выражают первые 2 цифры числа, из которого ищется квадратный корень. В верхней горизонтальной строчке (а также и в нижней) размещены числа: 0, 1, 2, 3... 9, представляющие собою 3-ю цифру данного числа, а затем далее направо помещены цифры 1, 2, 3 . . . 9, представляющие собою4-ю цифру данного числа. Во всех других горизонтальных строчках помещены по 2 четырехзначных числа, выражающие квадратные корни из соответствующих чисел.

Пусть требуется найти квадратный корень из какого-нибудь числа, целого или выраженного десятичною дробью. Прежде всего находим без помощи таблиц первую цифру корня и ее разряд. Затем отбросим в данном числе запятую, если она есть. Положим сначала, что после отбрасывания запятой останутся только 3 цифры, напр. 114. Находим в таблицах в левой крайней колонке первые 2 цифры, т. е. 11, и продвигаемся от них направо по горизонтальной строке до тех пор, пока не дойдем до вертикальной колонки, наверху (и внизу) которой стоит 3-я цифра числа, т. е. 4. В этом месте мы находим два четырехзначных числа: 1068 и 3376. Которое из этих двух чисел надо взять и где поставить в нем запятую, это определяется первою цифрою корня и ее разрядом, которые мы нашли раньше. Так, если надо найти √0,11"4 , то первая цифра корня есть 3 десятых, и потому мы должны взять для корня 0,3376. Если бы требовалось найти √1,14 , то первая цифра корня была бы 1, и мы взяли бы тогда 1,068.

Таким образом мы легко найдем:

√5,30 = 2,302; √7"18 = 26,80; √0,91"6 = 0,9571 и т.п.

Положим теперь, что требуется найти корень из числа, выраженного (по отбрасывании запятой) 4 цифрами, напр.√7"45,6 . Заметив, что первая цифра корня есть 2 десятка, находим для числа 745 так, как сейчас было объяснено, цифры 2729 (это число только замечаем пальцем, но его не записываем). Потом продвигаемся от этого числа еще направо до тех пор, пока в правой части таблицы (за последнею жирною чертою) не встретим ту вертикальную колонку, которая отмечена наверху (и внизу) 4-й цифрой данного числа, т. е. цифрой 6, и находим там число 1. Это будет поправка, которую надо приложить (в уме) к ранее найденному числу 2729; получим 2730. Это число записываем и ставим в нем запятую на надлежащем месте: 27,30.

Таким путем найдем, напр:

√44,37 = 6,661; √4,437 = 2,107; √0,04"437 =0,2107 и т.д.

Если подкоренное число выражается только одной или двумя цифрами, то мы можем предположить, что после этих цифр стоит один или два нуля, и затем поступать так, как было объяснено для трехзначного числа. Напр.√2,7 =√2,70 =1,643; √0,13 = √0,13"0 = 0,3606 и т.п..

Наконец, если подкоренное число выражено более, чем 4 цифрами, то из них мы возьмем только первые 4, а остальные отбросим, причем для уменьшения ошибки, если первая из отбрасцваемых цифр есть 5 или более 5, то мы увеличим на l четвертую из удержанных цифр. Так:

√357,8| 3 | = 18,91; √0,49"35|7 | = 0,7025; и т.п.

Замечание. В таблицах указан приближенный квадратный корень иногда с недостатком, иногда же с избытком, а именно тот из этих приближенных корней, который ближе подходит к точному корню.

179. Извлечение квадратных корней из обыкновенных дробей. Точный квадратный корень из несократимой дроби можно извлечь лишь тогда, когда оба члена дроби точные квадраты . В этом случае достаточно извлечь корень из числителя и знаменателя отдельно, напр.:

Приближенный квадратный корень из обыкновенной дроби c какою-нибудь десятичною точностью проще всего можно находить, если предварительно обратим обыкновенную дробь в десятичную, вычислив в этой дроби такое число десятичных знаков после запятой, которое было бы вдвое больше числа десятичных знаков в искомом корне.

Впрочем можно поступать и иначе. Объясним это на следующем примере:

Найти приближенный √ 5 / 24

Сделаем знаменатель точным квадратом. Для этого достаточно было бы умножить оба члена дроби на знаменатель 24; но в этом примере можно поступить иначе. Разложим 24 на простые множители: 24 = 2 2 2 3. Из этого разложения видно, что если 24 умножить на 2 и еще на 3, то тогда в произведении каждый простой множитель будет повторяться четное число раз, и, следовательно, знаменатель сделается квадратом:

Остается вычислить √30 с какой-нибудь точностью и результат разделить на 12. При этом надо иметь в виду, что от деления на 12 уменьшится и дробь, показывающая степень точности. Так, если найдем √30 с точностью до 1 / 10 и результат разделим на 12, то получим приближенный корень из дроби 5 / 24 с точностью до 1 / 120 (а именно 54 / 120 и 55 / 120)

Глава третья.

График функции х = √ y .

180. Обратная функция. Пусть дано какое-нибудь уравнение, определяющее у как функцию от х , напр, такое: у = х 2 . Мы можем сказать, что оно определяет не только у как функцию от х , но и, обратно, определяет х как функцию от у , хотя и неявным образом. Чтобы сделать эту функцию явной, надо решить данное уравнение относительно х , принимая у за известное число; так, из взятого нами уравнения находим: у = х 2 .

Алгебраическое выражение, полученное для x после решения уравнения, определяющего у как функцию от x, называется функцией, обратной той, которая определяет у.

Значит, функция, х = √ y обратна функции у = х 2 . Если, как это принято, независимое переменное обозначим х , а зависимое у , то полученную сейчас обратную функцию можем выразить так: y = √ x . Таким образом, чтобы получить функцию, обратную данной (прямой), надо из уравнения, определяющего эту данную функцию, вывести х в зависимости от y и в полученном выражении заменить y на x , а х на y .

181. График функции y = √ x . Функция эта невозможна при отрицательном значении х , но ее возможно вычислить (с любою точностью) при всяком положительном значении x , причем для каждого такого значения функция получает два различных значения с одинаковой абсолютной величиной, но с противоположными знаками. Если знаком будем обозначать только арифметическое значение квадратного корня, то эти два значения функции можем выразить так: y = ± √ x Для построения графика этой функции надо предварительно составить таблицу ее значений. Всего проще эту таблицу составить из таблицы значений прямой функции:

у = х 2 .

x

y

если значения у примем за значения х , и наоборот:

y = ± √ x

Нанеся все эти значения на чертеже, получим следующий график.

На том же чертеже мы изобразили (прерывистой линией) и график прямой функции у = х 2 . Сравним эти два графика между собою.

182. Соотношение между графиками прямой и обратной функций. Для составления таблицы значений обратной функции y = ± √ x мы брали для х те числа, которые в таблице прямой функции у = х 2 служили значениями для у , а для у брали те числа; которые в этой таблице были значениями для x . Из этого следует, что оба графика одинаковы, только график прямой функции так расположен относительно оси у - ов, как график обратной функции расположен относительно оси х - ов. Вследствие этого, если мы перегнем чертеж вокруг прямой ОА , делящей пополам прямой угол xОу , так, чтобы часть чертежа, содержащая полуось Оу , упала на ту часть, которая содержит полуось Ох , то Оу совместится с Ох , все деления Оу совпадут c делениями Ох , и точки параболы у = х 2 совместятся с соответствующими точками графика y = ± √ x . Напр, точки М и N , у которых ордината 4 , а абсциссы 2 и -2 , совпадут с точками М" и N" , у которых абсцисса 4 , а ординаты 2 и -2 . Если же эти точки совпадут, то это значит, что прямые ММ" и NN" перпендикулярны к ОА и делятся этою прямою пополам. То же самое можно сказать о всех других соответствующих точках обоих графиков.

Таким образом, график обратной функции должен быть такой же, как и грaфик прямой функции, но расположены эти графики различно, а именно симметрично друг с другом относительно биссектрисы угла хОу . Можно сказать, что график обратной функции есть отображение (как в зеркале) графика прямой функции относительно биссектрисы угла хОу .